摘要
原文 | 英語 |
---|---|
頁(從 - 到) | 966-977 |
頁數 | 12 |
期刊 | Molecular Psychiatry |
卷 | 19 |
發行號 | 9 |
DOIs | |
出版狀態 | 已發佈 - 2014 |
指紋
深入研究「Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings」主題。共同形成了獨特的指紋。引用此
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
於: Molecular Psychiatry, 卷 19, 編號 9, 2014, p. 966-977.
研究成果: 雜誌貢獻 › 文章 › 同行評審
}
TY - JOUR
T1 - Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings
AU - Northoff, Georg Franz Josef
AU - Sibille, Etienne L.
N1 - Cited By :6 Export Date: 11 May 2016 CODEN: MOPSF Correspondence Address: Northoff, G.; Department of Psychiatry, University of Ottawa Institute of Mental Health Research, Royal Ottawa Hospital, 1145 Carling Avenue, Canada Chemicals/CAS: 4 aminobutyric acid, 28805-76-7, 56-12-2; gamma-Aminobutyric Acid Funding Details: CIHR, Canadian Institutes of Health Research Funding Details: HDRF, Canadian Institutes of Health Research Funding Details: MH077159, NIMH, Canadian Institutes of Health Research Funding Details: MH084060, NIMH, Canadian Institutes of Health Research References: WHO, (2008) World Health Organization - The Global Burden of Disease - 2004 Update, , WHO Library: Geneva, Switzerland; Mayberg, H.S., Modulating limbic-cortical circuits in depression: Targets of antidepressant treatments (2002) Semin Clin Neuropsychiatry, 7, pp. 255-268; Belmaker, R.H., Agam, G., Major depressive disorder (2008) N Engl J Med, 358, pp. 55-68; Kupfer, D.J., Frank, E., Phillips, M.L., Major depressive disorder: New clinical, neurobiological, and treatment perspectives (2012) Lancet, 379, pp. 1045-1055; Mayberg, H.S., Positron emission tomography imaging in depression: A neural systems perspective (2003) Neuroimag Clin N Am, 13, pp. 805-815; Holtzheimer, P.E., Mayberg, H.S., Stuck in a rut: Rethinking depression and its treatment (2011) Trends Neurosci, 34, pp. 1-9; Northoff, G., Walter, M., Schulte, R.F., Beck, J., Dydak, U., Henning, A., GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI (2007) Nat Neurosci, 10, pp. 1515-1517; Price, J.L., Drevets, W.C., Neural circuits underlying the pathophysiology of mood disorders (2012) Trends Cogn Sci, 16, pp. 61-71; Northoff, G., Wiebking, C., Feinberg, T., Panksepp, J., The 'resting-state hypothesis' of major depressive disorder - A translational subcortical-cortical framework for a system disorder (2011) Neurosci Biobehav Rev, 35, pp. 1929-1945; Alcaro, A., Panksepp, J., Witczak, J., Hayes, D.J., Northoff, G., Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A crossspecies translational approach (2010) Neurosci Biobehav Rev, 34, pp. 592-605; Hasler, G., Northoff, G., Discovering imaging endophenotypes for major depression (2011) Mol Psychiatry, 16, pp. 604-619; Fitzgerald, P.B., Sritharan, A., Daskalakis, Z.J., De Castella, A.R., Kulkarni, J., Egan, G., A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression (2007) J Clin Psychopharmacol, 27, pp. 488-492; Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L.J., Bruno, M.A., Boveroux, P., Schnakers, C., Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients (2010) Brain, 133, pp. 161-171; Grimm, S., Ernst, J., Boesiger, P., Schuepbach, D., Hell, D., Boeker, H., Increased selffocus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures (2009) Hum Brain Mapp, 30, pp. 2617-2627; Grimm, S., Ernst, J., Boesiger, P., Schuepbach, D., Boeker, H., Northoff, G., Reduced negative BOLD responses in the default-mode network and increased self-focus in depression (2011) World J Biol Psychiatry, 12, pp. 627-637; Menon, V., Large-scale brain networks and psychopathology: A unifying triple network model (2011) Trends Cogn Sci, 15, pp. 483-506; Wiebking, C., Bauer, A., De Greck, M., Duncan, N.W., Tempelmann, C., Northoff, G., Abnormal body perception and neural activity in the insula in depression: An fMRI study of the depressed 'material me' (2010) World J Biol Psychiatry, 11, pp. 538-549; Craig, A.D., How do you feel - now? the anterior insula and human awareness (2009) Nat Rev Neurosci, 10, pp. 59-70; Panksepp, J., (1998) Affective Neuroscience: The Foundations of Human and Animal Emotions, 466p. , Oxford University Press: New York, NY, USA, pxii; Gross, J.J., (2013) Emotion Regulation: Taking Stock and Moving Forward. Emotion, 13, pp. 359-365; Buhle, J.T., Silvers, J.A., Wager, T.D., Lopez, R., Onyemekwu, C., Kober, H., Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies (2013) Cereb Cortex, , 13 June (e-pub ahead of print). advance online publication; Brambilla, P., Perez, J., Barale, F., Schettini, G., Soares, J.C., GABAergic dysfunction in mood disorders (2003) Mol Psychiatry, 8, pp. 721-737. , 715; Luscher, B., Shen, Q., Sahir, N., The GABAergic deficit hypothesis of major depressive disorder (2011) Mol Psychiatry, 16, pp. 383-406; Emrich, H.M., Von Zerssen, D., Kissling, W., Moller, H.J., Windorfer, A., Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders (1980) Arch Psychiatr Nervenkr, 229, pp. 1-16; Gold, B.I., Bowers, M.B., Roth, R.H., Sweeney, D.W., GABA levels in CSF of patients with psychiatric-disorders (1980) Am J Psychiat, 137, pp. 362-364; Petty, F., Schlesser, M.A., Plasma GABA in affective illness. A preliminary investigation (1981) J Affect Disord, 3, pp. 339-343; Petty, F., Sherman, A.D., Plasma GABA levels in psychiatric illness (1984) J Affect Disord, 6, pp. 131-138; Gerner, R.H., Hare, T.A., CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa (1981) Am J Psychiatry, 138, pp. 1098-1101; Hasler, G., Van Der Veen, J.W., Tumonis, T., Meyers, N., Shen, J., Drevets, W.C., Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy (2007) Arch Gen Psychiatry, 64, pp. 193-200; Levinson, A.J., Fitzgerald, P.B., Favalli, G., Blumberger, D.M., Daigle, M., Daskalakis, Z.J., Evidence of cortical inhibitory deficits in major depressive disorder (2010) Biol Psychiatry, 67, pp. 458-464; Gabbay, V., Mao, X., Klein, R.G., Ely, B.A., Babb, J.S., Panzer, A.M., Anterior cingulate cortex gamma-aminobutyric acid in depressed adolescents: Relationship to anhedonia (2012) Arch Gen Psychiatry, 69, pp. 139-149; Sanacora, G., Mason, G.F., Rothman, D.L., Krystal, J.H., Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors (2002) Am J Psychiatry, 159, pp. 663-665; Earnheart, J.C., Schweizer, C., Crestani, F., Iwasato, T., Itohara, S., Mohler, H., GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states (2007) J Neurosci, 27, pp. 3845-3854; Mayberg, H.S., Defining the neural circuitry of depression: Toward a new nosology with therapeutic implications (2007) Biol Psychiatry, 61, pp. 729-730; Sanacora, G., Treccani, G., Popoli, M., Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders (2012) Neuropharmacology, 62, pp. 63-77; Spruston, N., Pyramidal neurons: Dendritic structure and synaptic integration (2008) Nat Rev Neurosci, 9, pp. 206-221; Fino, E., Packer, A.M., Yuste, R., The logic of inhibitory connectivity in the neocortex (2013) Neuroscientist, 19, pp. 228-237; Defelipe, J., Lopez-Cruz, P.L., Benavides-Piccione, R., Bielza, C., Larranaga, P., Anderson, S., New insights into the classification and nomenclature of cortical GABAergic interneurons (2013) Nat Rev Neurosci, 14, pp. 202-216; Mao, R., Schummers, J., Knoblich, U., Lacey, C.J., Van Wart, A., Cobos, I., Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex (2012) Cereb Cortex, 22, pp. 493-508; Pfeffer, C.K., Xue, M., He, M., Huang, Z.J., Scanziani, M., Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons (2013) Nat Neurosci, 16, pp. 1068-1076; Packer, A.M., McConnell, D.J., Fino, E., Yuste, R., Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells (2012) Cereb Cortex, 23, pp. 2790-2802; Fino, E., Yuste, R., Dense inhibitory connectivity in neocortex (2011) Neuron, 69, pp. 1188-1203; Ma, Y., Hu, H., Berrebi, A.S., Mathers, P.H., Agmon, A., Distinct subtypes of somatostatincontaining neocortical interneurons revealed in transgenic mice (2006) J Neurosci, 26, pp. 5069-5082; Xu, H., Jeong, H.Y., Tremblay, R., Rudy, B., Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4 (2013) Neuron, 77, pp. 155-167; Sohal, V.S., Zhang, F., Yizhar, O., Deisseroth, K., Parvalbumin neurons and gamma rhythms enhance cortical circuit performance (2009) Nature, 459, pp. 698-702; Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Driving fast-spiking cells induces gamma rhythm and controls sensory responses (2009) Nature, 459, pp. 663-667; Valentine, G.W., Sanacora, G., Targeting glial physiology and glutamate cycling in the treatment of depression (2009) Biochem Pharmacol, 78, pp. 431-439; Soumier, A., Sibille, E., Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice (2014) Neuropsychopharmacology, , advance online publication, (e-pub ahead of print) 1 April; Lin, L.C., Sibille, E., Reduced brain somatostatin in mood disorders: A common pathophysiological substrate and drug target? (2013) Front Pharmacol, 4, p. 110; Tripp, A., Oh, H., Guilloux, J.P., Martinowich, K., Lewis, D.A., Sibille, E., Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder (2012) Am J Psychiatry, 169, pp. 1194-1202; Sibille, E., Morris, H.M., Kota, R.S., Lewis, D.A., GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders (2011) Int J Neuropsychopharmacol, 14, pp. 721-734; Guilloux, J.P., Douillard-Guilloux, G., Kota, R., Wang, X., Gardier, A.M., Martinowich, K., Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression (2012) Mol Psychiatry, 17, pp. 1130-1142; Tripp, A., Kota, R.S., Lewis, D.A., Sibille, E., Reduced somatostatin in subgenual anterior cingulate cortex in major depression (2011) Neurobiol Dis, 42, pp. 116-124; Rajkowska, G., O'Dwyer, G., Teleki, Z., Stockmeier, C.A., Miguel-Hidalgo, J.J., GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression (2007) Neuropsychopharmacology, 32, pp. 471-482; Maciag, D., Hughes, J., O'Dwyer, G., Pride, Y., Stockmeier, C.A., Sanacora, G., Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: Relevance to neuroimaging studies (2010) Biol Psychiatry, 67, pp. 465-470; Viollet, C., Lepousez, G., Loudes, C., Videau, C., Simon, A., Epelbaum, J., Somatostatinergic systems in brain: Networks and functions (2008) Mol Cell Endocrinol, 286, pp. 75-87; De Lecea, L., Del Rio, J.A., Criado, J.R., Alcantara, S., Morales, M., Danielson, P.E., Cortistatin is expressed in a distinct subset of cortical interneurons (1997) J Neurosci, 17, pp. 5868-5880; Karolewicz, B., Maciag, D., O'Dwyer, G., Stockmeier, C.A., Feyissa, A.M., Rajkowska, G., Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression (2010) Int J Neuropsychopharmacol, 13, pp. 411-420; Zhao, J., Bao, A.M., Qi, X.R., Kamphuis, W., Luchetti, S., Lou, J.S., Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients (2012) J Affect Disord, 138, pp. 494-502; Merali, Z., Du, L., Hrdina, P., Palkovits, M., Faludi, G., Poulter, M.O., Dysregulation in the suicide brain: MRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region (2004) J Neurosci, 24, pp. 1478-1485; Poulter, M.O., Du, L., Weaver, I.C., Palkovits, M., Faludi, G., Merali, Z., GABAA receptor promoter hypermethylation in suicide brain: Implications for the involvement of epigenetic processes (2008) Biol Psychiatry, 64, pp. 645-652; Poulter, M.O., Du, L., Zhurov, V., Palkovits, M., Faludi, G., Merali, Z., Altered organization of GABA(A) receptor mRNA expression in the depressed suicide brain (2010) Front Mol Neurosci, 3, p. 3; Choudary, P.V., Molnar, M., Evans, S.J., Tomita, H., Li, J.Z., Vawter, M.P., Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression (2005) Proc Natl Acad Sci USA, 102, pp. 15653-15658; Miguel-Hidalgo, J.J., Waltzer, R., Whittom, A.A., Austin, M.C., Rajkowska, G., Stockmeier, C.A., Glial and glutamatergic markers in depression, alcoholism, and their comorbidity (2010) J Affect Disord, 127, pp. 230-240; Fitzgerald, P.B., Oxley, T.J., Laird, A.R., Kulkarni, J., Egan, G.F., Daskalakis, Z.J., An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression (2006) Psychiatry Res, 148, pp. 33-45; Savitz, J., Drevets, W.C., Bipolar and major depressive disorder: Neuroimaging the developmental-degenerative divide (2009) Neurosci Biobehav Rev, 33, pp. 699-771; Savitz, J.B., Drevets, W.C., Imaging phenotypes of major depressive disorder: Genetic correlates (2009) Neuroscience, 164, pp. 300-330; Lewis, D.A., Cruz, D.A., Melchitzky, D.S., Pierri, J.N., Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: Evidence for fewer projections from the thalamus (2001) Am J Psychiatry, 158, pp. 1411-1422; Reiner, A., The triune brain in evolution. Role in paleocerebral functions (1990) Science, 250, pp. 303-305. , Paul D. MacLean. Plenum, New York, 1990. xxiv,illus. $75 672 pp; Morgane, P.J., Galler, J.R., Mokler, D.J., A review of systems and networks of the limbic forebrain/limbic midbrain (2005) Prog Neurobiol, 75, pp. 143-160; Morgane, P.J., Mokler, D.J., The limbic brain: Continuing resolution (2006) Neurosci Biobehav Rev, 30, pp. 119-125; Mesulam, M.M., (2000) Principles of Behavioral and Cognitive Neurology, 540p. , 2nd eEdn.Oxford University Press: Oxford, NY, USA, pxviii; Ongur, D., Price, J.L., The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans (2000) Cereb Cortex, 10, pp. 206-219; Paus, T., Primate anterior cingulate cortex: Where motor control, drive and cognition interface (2001) Nat Rev Neurosci, 2, pp. 417-424; Palomero-Gallagher, N., Mohlberg, H., Zilles, K., Vogt, B., Cytology and receptor architecture of human anterior cingulate cortex (2008) J Comp Neurol, 508, pp. 906-926; Palomero-Gallagher, N., Vogt, B.A., Schleicher, A., Mayberg, H.S., Zilles, K., Receptor architecture of human cingulate cortex: Evaluation of the four-region neurobiological model (2009) Hum Brain Mapp, 30, pp. 2336-2355; Vogt, B.A., Hof, P.R., Zilles, K., Vogt, L.J., Herold, C., Palomero-Gallagher, N., Cingulate area 32 homologies in mouse, rat, macaque and human: Cytoarchitecture and receptor architecture (2013) J Comp Neurol, 521, pp. 4189-4204; Palomero-Gallagher, N., Zilles, K., Schleicher, A., Vogt, B.A., Cyto- and receptor architecture of area 32 in human and macaque brains (2013) J Comp Neurol, 521, pp. 3272-3286; Dou, W., Palomero-Gallagher, N., Van Tol, M.J., Kaufmann, J., Zhong, K., Bernstein, H.G., Systematic regional variations of GABA, glutamine, and glutamate concentrations follow receptor fingerprints of human cingulate cortex (2013) J Neurosci, 33, pp. 12698-12704; Feinberg, T.E., (2009) From Axons to Identity: Neurological Explorations of the Nature of the Self, , WW Norton & Company: New York, NY, USA and London, UK; Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna, H., Restingstate functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus (2007) Biol Psychiatry, 62, pp. 429-437; Goel, V., Dolan, R.J., Explaining modulation of reasoning by belief (2003) Cognition, 87, pp. B11-B22; Northoff, G., Heinzel, A., Bermpohl, F., Niese, R., Pfennig, A., Pascual-Leone, A., Reciprocal modulation and attenuation in the prefrontal cortex: An fMRI study on emotional-cognitive interaction (2004) Hum Brain Mapp, 21, pp. 202-212; Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., Neurophysiological investigation of the basis of the fMRI signal (2001) Nature, 412, pp. 150-157; Logothetis, N.K., What we can do and what we cannot do with fMRI (2008) Nature, 453, pp. 869-878; Goense, J., Merkle, H., Logothetis, N.K., High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses (2012) Neuron, 76, pp. 629-639; Lauritzen, M., Mathiesen, C., Schaefer, K., Thomsen, K.J., Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses (2012) NeuroImage, 62, pp. 1040-1050; Gusnard, D.A., Akbudak, E., Shulman, G.L., Raichle, M.E., Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function (2001) Proc Natl Acad Sci USA, 98, pp. 4259-4264; Phillips, M.L., Drevets, W.C., Rauch, S.L., Lane, R., Neurobiology of emotion perception II: Implications for major psychiatric disorders (2003) Biol Psychiatry, 54, pp. 515-528; Kuhn, S., Gallinat, J., Resting-state brain activity in schizophrenia and major depression: A quantitative meta-analysis (2013) Schizophr Bull, 39, pp. 358-365; Bermpohl, F., Walter, M., Sajonz, B., Lucke, C., Hagele, C., Sterzer, P., Attentional modulation of emotional stimulus processing in patients with major depression - alterations in prefrontal cortical regions (2009) Neurosci Lett, 463, pp. 108-113; Northoff, G., What the brain's intrinsic activity can tell us about consciousness? A tri-dimensional view (2013) Neurosci Biobehav Rev, 37, pp. 726-738; Logothetis, N.K., Murayama, Y., Augath, M., Steffen, T., Werner, J., Oeltermann, A., How not to study spontaneous activity (2009) NeuroImage, 45, pp. 1080-1089; Bhagwagar, Z., Wylezinska, M., Jezzard, P., Evans, J., Boorman, E., Mm, P., Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication- free, recovered depressed patients (2008) Int J Neuropsychopharmacol, 11, pp. 255-260; Shaw, A., Brealy, J., Richardson, H., Muthukumaraswamy, S.D., Edden, R.A., John Evans, C., Marked reductions in visual evoked responses but not gamma-aminobutyric acid concentrations or gamma-band measures in remitted depression (2013) Biol Psychiatry, 73, pp. 691-698; Plante, D.T., Jensen, J.E., Schoerning, L., Winkelman, J.W., Reduced gammaaminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: A link to major depressive disorder? (2012) Neuropsychopharmacology, 37, pp. 1548-1557; Walter, M., Henning, A., Grimm, S., Schulte, R.F., Beck, J., Dydak, U., The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression (2009) Arch Gen Psychiatry, 66, pp. 478-486; Stagg, C.J., Bachtiar, V., Johansen-Berg, H., What are we measuring with GABA magnetic resonance spectroscopy? (2011) Commun Integr Biol, 4, pp. 573-575; Seybold, B.A., Stanco, A., Cho, K.K., Potter, G.B., Kim, C., Sohal, V.S., Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex (2012) Proc Natl Acad Sci USA, 109, pp. 13829-13834; Stagg, C.J., Bestmann, S., Constantinescu, A.O., Moreno, L.M., Allman, C., Mekle, R., Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex (2011) J Physiol, 589, pp. 5845-5855; Tremblay, S., Beaule, V., Proulx, S., De Beaumont, L., Marjanska, M., Doyon, J., Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate+glutamine (2013) J Neurophysiol, 109, pp. 1343-1349; Raichle, M.E., Macleod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., A default mode of brain function (2001) Proc Natl Acad Sci USA, 98, pp. 676-682; Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., The brain's default network: Anatomy, function, and relevance to disease (2008) Ann NY Acad Sci, 1124, pp. 1-38; Chen, A.C., Oathes, D.J., Chang, C., Bradley, T., Zhou, Z.W., Williams, L.M., Causal interactions between fronto-parietal central executive and default-mode networks in humans (2013) Proc Natl Acad Sci USA, 110, pp. 19944-19949; Christoff, K., Gordon, A.M., Smallwood, J., Smith, R., Schooler, J.W., Experience sampling during fMRI reveals default network and executive system contributions to mind wandering (2009) Proc Natl Acad Sci USA, 106, pp. 8719-8724; Mason, M.F., Norton, M.I., Van Horn, J.D., Wegner, D.M., Grafton, S.T., Macrae, C.N., Wandering minds: The default network and stimulus-independent thought (2007) Science, 315, pp. 393-395; Christoff, K., Undirected thought: Neural determinants and correlates (2012) Brain Res, 1428, pp. 51-59; Qin, P., Di, H., Liu, Y., Yu, S., Gong, Q., Duncan, N., Anterior cingulate activity and the self in disorders of consciousness (2010) Hum Brain Mapp, 31, pp. 1993-2002; Huang, Z., Dai, R., Wu, X., Yang, Z., Liu, D., Hu, J., The self and its resting state in consciousness: An investigation of the vegetative state (2013) Hum Brain Mapp, 35, pp. 1997-2008; Northoff, G., Panksepp, J., The trans-species concept of self and the subcortical- -cortical midline system (2008) Trends Cogn Sci, 12, pp. 259-264; Qin, P., Northoff, G., How is our self related to midline regions and the defaultmode network? (2011) NeuroImage, 57, pp. 1221-1233; Kapogiannis, D., Reiter, D.A., Willette, A.A., Mattson, M.P., Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network (2013) NeuroImage, 64, pp. 112-119; Duncan, N.W., Wiebking, C., Tiret, B., Marjanska, M., Hayes, D.J., Lyttleton, O., Glutamate concentration in the medial prefrontal cortex predicts restingstate cortical-subcortical functional connectivity in humans (2013) PLoS One, 8; Flodin, P., Gospic, K., Petrovic, P., Fransson, P., Effects of L-dopa and oxazepam on resting-state functional magnetic resonance imaging connectivity: A randomized, cross-sectional placebo study (2012) Brain Connect, 2, pp. 246-253; Northoff, G., Witzel, T., Richter, A., Gessner, M., Schlagenhauf, F., Fell, J., GABAergic modulation of prefrontal spatio-temporal activation pattern during emotional processing: A combined fMRI/MEG study with placebo and lorazepam (2002) J Cogn Neurosci, 14, pp. 348-370; Driesen, N.R., McCarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D'Souza, D.C., Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans (2013) Mol Psychiatry, 18, pp. 1199-1204; Scheidegger, M., Walter, M., Lehmann, M., Metzger, C., Grimm, S., Boeker, H., Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action (2012) PLoS One, 7; Anticevic, A., Cole, M.W., Repovs, G., Savic, A., Driesen, N.R., Yang, G., Connectivity, pharmacology, and computation: Toward a mechanistic understanding of neural system dysfunction in schizophrenia (2013) Front Psychiatry, 4, p. 169; Anticevic, A., Gancsos, M., Murray, J.D., Repovs, G., Driesen, N.R., Ennis, D.J., NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia (2012) Proc Natl Acad Sci USA, 109, pp. 16720-16725; Connolly, C.G., Wu, J., Ho, T.C., Hoeft, F., Wolkowitz, O., Eisendrath, S., Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents (2013) Biol Psychiatry, 74, pp. 898-907; Zeng, L.L., Shen, H., Liu, L., Hu, D., Unsupervised classification of major depression using functional connectivity MRI (2013) Hum Brain Mapp, 35, pp. 1630-1641; Davey, C.G., Harrison, B.J., Yucel, M., Allen, N.B., Regionally specific alterations in functional connectivity of the anterior cingulate cortex in major depressive disorder (2012) Psychol Med, 42, pp. 2071-2081; Li, C.T., Chen, L.F., Tu, P.C., Wang, S.J., Chen, M.H., Su, T.P., Impaired prefrontothalamic functional connectivity as a key feature of treatment-resistant depression: A combined MEG, PET and rTMS study (2013) PLoS One, 8; Ye, T., Peng, J., Nie, B., Gao, J., Liu, J., Li, Y., Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder (2012) Eur J Radiol, 81, pp. 4035-4040; Kong, L., Chen, K., Tang, Y., Wu, F., Driesen, N., Womer, F., Functional connectivity between the amygdala and prefrontal cortex in medication-naive individuals with major depressive disorder (2013) J Psychiatry Neurosci, 38, p. 120117; Khadka, S., Meda, S.A., Stevens, M.C., Glahn, D.C., Calhoun, V.D., Sweeney, J.A., Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study (2013) Biol Psychiatry, 74, pp. 458-466; Orliac, F., Naveau, M., Joliot, M., Delcroix, N., Razafimandimby, A., Brazo, P., Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia (2013) Schizophr Res, 148, pp. 74-80; Mamah, D., Barch, D.M., Repovs, G., Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia (2013) J Affect Disord, 150, pp. 601-609; Yu, Y., Shen, H., Zeng, L.L., Ma, Q., Hu, D., Convergent and divergent functional connectivity patterns in schizophrenia and depression (2013) PLoS One, 8; Sambataro, F., Wolf, N.D., Pennuto, M., Vasic, N., Wolf, R.C., Revisiting default mode network function in major depression: Evidence for disrupted subsystem connectivity (2013) Psychol Med, , advance online publication, 31 October e-pub ahead of print; Lemogne, C., Mayberg, H., Bergouignan, L., Volle, E., Delaveau, P., Lehericy, S., Selfreferential processing and the prefrontal cortex over the course of depression: A pilot study (2010) J Affect Disord, 124, pp. 196-201; Lemogne, C., Delaveau, P., Freton, M., Guionnet, S., Fossati, P., Medial prefrontal cortex and the self in major depression (2012) J Affect Disord, 136, pp. e1-e11; Berman, M.G., Peltier, S., Nee, D.E., Kross, E., Deldin, P.J., Jonides, J., Depression, rumination and the default network (2011) Soc Cogn Affect Neurosci, 6, pp. 548-555; Hamilton, J.P., Furman, D.J., Chang, C., Thomason, M.E., Dennis, E., Gotlib, I.H., Defaultmode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination (2011) Biol Psychiatry, 70, pp. 327-333; Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients (2012) Biol Psychiatry, 71, pp. 611-617; Kuhn, S., Vanderhasselt, M.A., De Raedt, R., Gallinat, J., Why ruminators won't stop: The structural and resting state correlates of rumination and its relation to depression (2012) J Affect Disord, 141, pp. 352-360; Northoff, G., (2013) Unlocking the Brain. Volume II: Consciousness, 2. , Oxford University Press: Oxford, NY, USA; Gabbay, V., Ely, B.A., Li, Q., Bangaru, S.D., Panzer, A.M., Alonso, C.M., Striatum-based circuitry of adolescent depression and anhedonia (2013) J Am Acad Child Adolesc Psychiatry, 52, pp. 628-641. , e613; Venzala, E., Garcia-Garcia, A.L., Elizalde, N., Tordera, R.M., Social vs environmental stress models of depression from a behavioural and neurochemical approach (2013) Eur Neuropsychopharmacol, 23, pp. 697-708
PY - 2014
Y1 - 2014
N2 - Major depression is a complex and severe psychiatric disorder whose symptomatology encompasses a critical shift in awareness, especially in the balance from external to internal mental focus. This is reflected by unspecific somatic symptoms and the predominance of the own cognitions manifested in increased self-focus and rumination. We posit here that sufficient empirical data has accumulated to build a coherent biologic model that links these psychologic concepts and symptom dimensions to observed biochemical, cellular, regional and neural network deficits. Specifically, deficits in inhibitory γ-aminobutyric acid regulating excitatory cell input/output and local cell circuit processing of information in key brain regions may underlie the shift that is observed in depressed subjects in resting-state activities between the perigenual anterior cingulate cortex and the dorsolateral prefrontal cortex. This regional dysbalance translates at the network level in a dysbalance between default-mode and executive networks, which psychopathologically surfaces as a shift in focus from external to internal mental content and associated symptoms. We focus here on primary evidence at each of those levels and on putative mechanistic links between those levels. Apart from its implications for neuropsychiatric disorders, our model provides for the first time a set of hypotheses for cross-level mechanisms of how internal and external mental contents may be constituted and balanced in healthy subjects, and thus also contributes to the neuroscientific debate on the neural correlates of consciousness. © 2014 Macmillan Publishers Limited All rights reserved.
AB - Major depression is a complex and severe psychiatric disorder whose symptomatology encompasses a critical shift in awareness, especially in the balance from external to internal mental focus. This is reflected by unspecific somatic symptoms and the predominance of the own cognitions manifested in increased self-focus and rumination. We posit here that sufficient empirical data has accumulated to build a coherent biologic model that links these psychologic concepts and symptom dimensions to observed biochemical, cellular, regional and neural network deficits. Specifically, deficits in inhibitory γ-aminobutyric acid regulating excitatory cell input/output and local cell circuit processing of information in key brain regions may underlie the shift that is observed in depressed subjects in resting-state activities between the perigenual anterior cingulate cortex and the dorsolateral prefrontal cortex. This regional dysbalance translates at the network level in a dysbalance between default-mode and executive networks, which psychopathologically surfaces as a shift in focus from external to internal mental content and associated symptoms. We focus here on primary evidence at each of those levels and on putative mechanistic links between those levels. Apart from its implications for neuropsychiatric disorders, our model provides for the first time a set of hypotheses for cross-level mechanisms of how internal and external mental contents may be constituted and balanced in healthy subjects, and thus also contributes to the neuroscientific debate on the neural correlates of consciousness. © 2014 Macmillan Publishers Limited All rights reserved.
KW - 4 aminobutyric acid
KW - 4 aminobutyric acid receptor
KW - anterior cingulate
KW - cognition
KW - default mode network
KW - depression
KW - executive function
KW - GABAergic system
KW - human
KW - interneuron
KW - mental function
KW - negative feedback
KW - nerve cell
KW - nerve cell network
KW - neuropathology
KW - prefrontal cortex
KW - priority journal
KW - pyramidal nerve cell
KW - Review
KW - biological model
KW - brain cortex
KW - major depression
KW - metabolism
KW - nerve tract
KW - pathophysiology
KW - physiology
KW - psychology
KW - self concept
KW - Cerebral Cortex
KW - Depressive Disorder, Major
KW - GABAergic Neurons
KW - gamma-Aminobutyric Acid
KW - Humans
KW - Models, Neurological
KW - Neural Pathways
KW - Self Concept
U2 - 10.1038/mp.2014.68
DO - 10.1038/mp.2014.68
M3 - Article
C2 - 25048001
SN - 1359-4184
VL - 19
SP - 966
EP - 977
JO - Molecular Psychiatry
JF - Molecular Psychiatry
IS - 9
ER -