Using Multi-task Deep Neural Network to Explore Person Interaction from Social Media

Yung Chun Chang, Tzu Ying Chen, Ting Yu Lin, Yu Lun Hsieh

研究成果: 書貢獻/報告類型會議貢獻

摘要

This work sought to identify the interactions between persons mentioned in social media to help readers construct background knowledge of a certain topic. We propose using a rich interactive tree structure to represent syntactic, contextual, and semantic information, and adopt a tree-based convolution kernel to identify segments that carry clues about personal interactions, which are then used to construct person-interaction networks. Empirical evaluations demonstrate that the proposed method is effective in detecting and extracting the interactions between persons in textual data, outperforming other existing extraction approaches. Furthermore, readers will be able to easily navigate through the network of the interactions between persons of interest that is constructed by the proposed method, and efficiently obtain insights from a massive corpus.
原文英語
主出版物標題Proceedings - 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2022
編輯Jiashu Zhao, Yixing Fan, Ebrahim Bagheri, Norbert Fuhr, Atsuhiro Takasu
發行者Institute of Electrical and Electronics Engineers Inc.
頁面371-376
頁數6
ISBN(電子)9781665494021
DOIs
出版狀態已發佈 - 2022
事件2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2022 - Virtual, Online, 加拿大
持續時間: 11月 17 202211月 20 2022

出版系列

名字Proceedings - 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2022

會議

會議2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2022
國家/地區加拿大
城市Virtual, Online
期間11/17/2211/20/22

ASJC Scopus subject areas

  • 人工智慧
  • 電腦網路與通信
  • 電腦科學應用
  • 資訊系統與管理
  • 通訊

指紋

深入研究「Using Multi-task Deep Neural Network to Explore Person Interaction from Social Media」主題。共同形成了獨特的指紋。

引用此