Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients

Erik Dovgan, Anton Gradišek, Mitja Luštrek, Mohy Uddin, Aldilas Achmad Nursetyo, Sashi Kiran Annavarajula, Yu Chuan Li, Shabbir Syed-Abdul

研究成果: 雜誌貢獻文章同行評審

27 引文 斯高帕斯(Scopus)

摘要

Starting renal replacement therapy (RRT) for patients with chronic kidney disease (CKD) at an optimal time, either with hemodialysis or kidney transplantation, is crucial for patient’s well-being and for successful management of the condition. In this paper, we explore the possibilities of creating forecasting models to predict the onset of RRT 3, 6, and 12 months from the time of the patient’s first diagnosis with CKD, using only the comorbidities data from National Health Insurance from Taiwan. The goal of this study was to see whether a limited amount of data (including comorbidities but not considering laboratory values which are expensive to obtain in low- and medium-income countries) can provide a good basis for such predictive models. On the other hand, in developed countries, such models could allow policy-makers better planning and allocation of resources for treatment. Using data from 8,492 patients, we obtained the area under the receiver operating characteristic curve (AUC) of 0.773 for predicting RRT within 12 months from the time of CKD diagnosis. The results also show that there is no additional advantage in focusing only on patients with diabetes in terms of prediction performance. Although these results are not as such suitable for adoption into clinical practice, the study provides a strong basis and a variety of approaches for future studies of forecasting models in healthcare.

原文英語
文章編號e0233976
期刊PLoS ONE
15
發行號6
DOIs
出版狀態已發佈 - 6月 2020

ASJC Scopus subject areas

  • 生物化學、遺傳與分子生物學 (全部)
  • 農業與生物科學 (全部)
  • 多學科

指紋

深入研究「Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients」主題。共同形成了獨特的指紋。

引用此