Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels

Tien Li Chang, Zhao Chi Chen, Ya Wei Lee, Yan Hom Li, Chien Ping Wang

研究成果: 雜誌貢獻文章同行評審

16 引文 斯高帕斯(Scopus)


Microfluidic devices constitute the key technology enabling the development of more functional lab-on-a-chip systems for medical applications. This study presents an alternative method for precisely fabricating microfluidic pillar array channels by using irradiation by an ultrashort pulse from an ultrafast laser. Unlike conventional photolithography, which requires complex procedures and techniques, the ultrafast laser process is a straightforward approach for fabricating a functional microfluidic device with multiple pulses of an ultraviolet (UV) wavelength. To satisfy the requirements of the industrial process for mass production of microfluidic devices, a picosecond (PS) laser is used as a light source. Under the optimal energy fluence of 15.28 J/cm2 with a pulse overlap of 95%, the scanning curve process can be executed in the clockwise direction for forming microfluidic pillar array structures. Simultaneously, the experimental evidence shows that the ultrafast laser process produces ablated soda-lime glass channels with hydrophilic surfaces on their inner walls. Based on the processing parameters of pillar structure with the number of pulses, the value of ablation rate can be 0.04 μm/pulse. This work provides a direct patterning process through which a pillar array with functional structures can be constructed within the microfluidic device.
頁(從 - 到)95-101
期刊Microelectronic Engineering
出版狀態已發佈 - 6月 2016

ASJC Scopus subject areas

  • 電子、光磁材料
  • 原子與分子物理與光學
  • 凝聚態物理學
  • 表面、塗料和薄膜
  • 電氣與電子工程


深入研究「Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels」主題。共同形成了獨特的指紋。