TY - JOUR
T1 - TRPM7 via calcineurin/NFAT pathway mediates metastasis and chemotherapeutic resistance in head and neck squamous cell carcinoma
AU - Chen, Tsung Ming
AU - Huang, Chih Ming
AU - Hsieh, Ming Shou
AU - Lin, Chun Shu
AU - Lee, Wei Hwa
AU - Yeh, Chi Tai
AU - Liu, Shao Cheng
N1 - Funding Information:
This work was supported by National Science Council of Taiwan: Shao-Cheng Liu (MOST 108-2314-B-016-040-MY3). This study was also supported by grants from Tri-Service General Hospital, National Defense Medical Center, Taiwan (MND-MAB-D-111116) to Shao-Cheng Liu.
Publisher Copyright:
© 2022. Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
PY - 2022/6/29
Y1 - 2022/6/29
N2 - The exact mechanisms of Head and neck squamous carcinoma (HNSCC) chemoresistance and metastatic transformation remain unclear. In recent decades, members of the transient receptor potential (TRP) channel family have been proposed as potential biomarkers and/or drug targets in cancer treatment. First, in a TCGA cohort of HNSCC, TRPM7 is highly expressed in cancer tissues, especially the expression in invasive cancer tissues is statistically significant (p>0.001). In GEO and TCGA cohort, patients with high expression of TRPM7 and NFATC2 have poor overall survival rates. The expression of TRPM7 and NFATC2 showed a positive correlation. Compared to human normal oral keratinocytes (hNOK), TRPM7 is overexpressed in FaDU, SAS, and TW2.6 cell lines. Similarly, patients with HNSCC exhibited higher TRPM7 expression than non-HNSCC subjects, and this high TRPM7 expression was associated with worse 5-year overall survival. Furthermore, TRPM7 inversely correlated with E-cadherin, but positively correlated with Vimentin, NANOG, and BMI-1 mRNA levels. Consistent with this, we demonstrated the overexpression of TRPM7 in cisplatin-resistant subjects, compared to the cisplatin-sensitive counterparts. Moreover, shRNA-mediated silencing of TRPM7 significantly suppressed the migration, invasion, colony formation, and tumorsphere formation of SAS cells, with associated downregulation of Snail, c-Myc, cyclin D1, SOX2, OCT4, and NANOG proteins expression. Finally, compared with the untreated wild-type SAS cells or cisplatin-treated cells, shTRPM7 alone or in combination with cisplatin significantly inhibited tumorsphere and colony formation. These findings serving as the basis for development of novel therapeutic strategies against metastasis and chemoresistance, while providing new insights into TRPM7 biology and activity in HNSCC.
AB - The exact mechanisms of Head and neck squamous carcinoma (HNSCC) chemoresistance and metastatic transformation remain unclear. In recent decades, members of the transient receptor potential (TRP) channel family have been proposed as potential biomarkers and/or drug targets in cancer treatment. First, in a TCGA cohort of HNSCC, TRPM7 is highly expressed in cancer tissues, especially the expression in invasive cancer tissues is statistically significant (p>0.001). In GEO and TCGA cohort, patients with high expression of TRPM7 and NFATC2 have poor overall survival rates. The expression of TRPM7 and NFATC2 showed a positive correlation. Compared to human normal oral keratinocytes (hNOK), TRPM7 is overexpressed in FaDU, SAS, and TW2.6 cell lines. Similarly, patients with HNSCC exhibited higher TRPM7 expression than non-HNSCC subjects, and this high TRPM7 expression was associated with worse 5-year overall survival. Furthermore, TRPM7 inversely correlated with E-cadherin, but positively correlated with Vimentin, NANOG, and BMI-1 mRNA levels. Consistent with this, we demonstrated the overexpression of TRPM7 in cisplatin-resistant subjects, compared to the cisplatin-sensitive counterparts. Moreover, shRNA-mediated silencing of TRPM7 significantly suppressed the migration, invasion, colony formation, and tumorsphere formation of SAS cells, with associated downregulation of Snail, c-Myc, cyclin D1, SOX2, OCT4, and NANOG proteins expression. Finally, compared with the untreated wild-type SAS cells or cisplatin-treated cells, shTRPM7 alone or in combination with cisplatin significantly inhibited tumorsphere and colony formation. These findings serving as the basis for development of novel therapeutic strategies against metastasis and chemoresistance, while providing new insights into TRPM7 biology and activity in HNSCC.
KW - Calcineurin/nfat pathway
KW - Cancer stem cell
KW - Chemoresistance
KW - Hnscc
KW - Transient receptor potential cation channel subfamily m member 7
UR - http://www.scopus.com/inward/record.url?scp=85133370327&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133370327&partnerID=8YFLogxK
U2 - 10.18632/aging.204154
DO - 10.18632/aging.204154
M3 - Article
C2 - 35771152
AN - SCOPUS:85133370327
SN - 1945-4589
VL - 14
SP - 5250
EP - 5270
JO - Aging
JF - Aging
IS - 12
ER -