摘要
Chemotherapy-induced neutropenia often increases the likelihood of life-threatening infections. In this study, a nanoparticle (NP) system composed of chitosan and poly(γ-glutamic acid) conjugated with diethylene triamine pentaacetic acid (γPGA-DTPA) was prepared for oral delivery of granulocyte colony-stimulating factor (G-CSF), a hematopoietic growth factor. The therapeutic potential of this NP system for daily administration of G-CSF to treat neutropenia associated with chemotherapy was evaluated in a rat model. Invitro results indicate that the procedures of NP loading and release preserved the structural integrity and bioactivity of the G-CSF molecules adequately. Those results further demonstrated the enzymatic inhibition activity of γPGA-DTPA towards G-CSF against intestinal proteases. Additionally, the invivo biodistribution study clearly identified accumulations of G-CSF in the heart, liver, bone marrow, and urinary bladder, an indication of systemic absorption of G-CSF; its relative bioavailability was approximately 13.6%. Moreover, significant glucose uptake was observed in bone marrow during G-CSF treatment, suggesting increased bone marrow metabolism and neutrophil production. Consequently, neutrophil count in the blood increased in a sustained manner; this fact may help a patient's immune system recover from the side effects of chemotherapy.
原文 | 英語 |
---|---|
頁(從 - 到) | 3641-3649 |
頁數 | 9 |
期刊 | Biomaterials |
卷 | 35 |
發行號 | 11 |
DOIs | |
出版狀態 | 已發佈 - 4月 2014 |
ASJC Scopus subject areas
- 材料力學
- 陶瓷和複合材料
- 生物工程
- 生物物理學
- 生物材料