The opening effect of pregabalin on ATP-sensitive potassium channels in differentiated hippocampal neuron-derived H19-7 cells

Chin Wei Huang, Chao Ching Huang, Sheng Nan Wu

研究成果: 雜誌貢獻文章同行評審

28 引文 斯高帕斯(Scopus)

摘要

Purpose: Adenosine triphosphate (ATP)-sensitive K+ (K ATP) channels can couple an intracellular metabolic state to an electrical activity, which is important in the control of neuronal excitability and seizure propagation. We investigated whether the newer antiepileptic drug, pregabalin (PGB), could exert effects on KATP channels in differentiated hippocampal neuron-derived H19-7 cells. Methods: The inside-out configuration of the patch-clamp technique was used to investigate K ATP channel activities in H19-7 cells in the presence of PGB. Effects of various compounds known to alter KATP channel activities were compared. Results: The activity of KATP channels in these cells was characterized. The single-channel conductance from a linear current-voltage relation was 78 ± 2 pS (n = 8) with a reversal potential of 63 ± 2 mV (n = 8), similar to that of KATP channels reported in pancreatic β cells. 2,4-Dinitrophenol activated channel activity, but the further addition of glucose (20 mM) or glibenclamide (30 μM) could offset these increments. PGB significantly opened these KATP channel activities in a concentration-dependent fashion with a median effective concentration (EC50) value of 18 μM. A significant increase was noted in the mean open lifetime of KATP channels in the presence of PGB (1.71 ± 0.04 to 5.62 ± 0.04 ms). Conclusions: This study suggests that in differentiated hippocampal neuron-derived H19-7 cells, the opening effect on KATP channels could be one of the underlying mechanisms of PGB in the reduction of neuronal excitability.

原文英語
頁(從 - 到)720-726
頁數7
期刊Epilepsia
47
發行號4
DOIs
出版狀態已發佈 - 4月 2006
對外發佈

ASJC Scopus subject areas

  • 神經病學(臨床)
  • 神經科學 (全部)

指紋

深入研究「The opening effect of pregabalin on ATP-sensitive potassium channels in differentiated hippocampal neuron-derived H19-7 cells」主題。共同形成了獨特的指紋。

引用此