TY - JOUR
T1 - The effects of induced apneic episodes on cerebral cortical oxygenation in newborn piglets
AU - Tammela, Outi K.T.
AU - Lajevardi, Nasser
AU - Huang, Chao Ching
AU - Wilson, David F.
AU - Delivoria-Papadopoulos, Maria
AU - Pastuszko, Anna
PY - 1996/11/25
Y1 - 1996/11/25
N2 - The effect of different inspiratory oxygen levels (FiO2) on cortical oxygenation (pO2) during and after recovery from apnea, was investigated in 18 anesthetized, paralyzed, and mechanically ventilated newborn piglets. Heart rate (HR) and mean arterial blood pressure (MABP) were continuously monitored as the piglets were subjected to repeated episodes of apnea initiated by disconnecting the ventilator and terminated when HR decreased to less than 80 beats/min by reconnecting the ventilator. A closed cranial window was placed over the parietal cortex of the animals and cortical pO2 was measured optically by phosphorescence quenching. Apneic episodes induced in animals ventilated with 15%, 22% and 40% oxygen had mean duration's of apnea (time before HR decreased to less than 80 beats/min) of 80, 128 and 134 s, respectively. By the end of the apnea the MABP decreased to 82%, 64%, and 54% of control, respectively. The cortical pO2 decreased from control values of 24.1, 32.3 and 38.3 Torr at 15%, 22% and 40% oxygen, respectively, to 1.7 to 3.2 Torr at the end of the apneic episode. The duration of apnea necessary for the cortical pO2 to drop below 20.3 Torr was 18, 44 and 81 s at 15%, 22% and 40% oxygen, respectively. There was an inverse correlation between the rate of decline of cortical pO2 and baseline FiO2 levels. With reventilation, the cortical pO2 reached maximal values of 42.8, 51.9 and 57.2 Torr at 15%, 22%, and 40% oxygen, respectively, before returning to the pre-apnea values. The present results show that apnea of less than 30 s duration at an FiO2 of 22% do not result in significant cortical hypoxia in hemodynamically stable piglets. Increasing the FiO2 to above 22% may possibly increase the rate of recovery of tissue oxygenation but it also may facilitate post-hypoxic cortical hyperoxia, a factor that may predispose the immature brain to free radical injury.
AB - The effect of different inspiratory oxygen levels (FiO2) on cortical oxygenation (pO2) during and after recovery from apnea, was investigated in 18 anesthetized, paralyzed, and mechanically ventilated newborn piglets. Heart rate (HR) and mean arterial blood pressure (MABP) were continuously monitored as the piglets were subjected to repeated episodes of apnea initiated by disconnecting the ventilator and terminated when HR decreased to less than 80 beats/min by reconnecting the ventilator. A closed cranial window was placed over the parietal cortex of the animals and cortical pO2 was measured optically by phosphorescence quenching. Apneic episodes induced in animals ventilated with 15%, 22% and 40% oxygen had mean duration's of apnea (time before HR decreased to less than 80 beats/min) of 80, 128 and 134 s, respectively. By the end of the apnea the MABP decreased to 82%, 64%, and 54% of control, respectively. The cortical pO2 decreased from control values of 24.1, 32.3 and 38.3 Torr at 15%, 22% and 40% oxygen, respectively, to 1.7 to 3.2 Torr at the end of the apneic episode. The duration of apnea necessary for the cortical pO2 to drop below 20.3 Torr was 18, 44 and 81 s at 15%, 22% and 40% oxygen, respectively. There was an inverse correlation between the rate of decline of cortical pO2 and baseline FiO2 levels. With reventilation, the cortical pO2 reached maximal values of 42.8, 51.9 and 57.2 Torr at 15%, 22%, and 40% oxygen, respectively, before returning to the pre-apnea values. The present results show that apnea of less than 30 s duration at an FiO2 of 22% do not result in significant cortical hypoxia in hemodynamically stable piglets. Increasing the FiO2 to above 22% may possibly increase the rate of recovery of tissue oxygenation but it also may facilitate post-hypoxic cortical hyperoxia, a factor that may predispose the immature brain to free radical injury.
KW - apnea
KW - cerebral oxygenation
KW - hypoxia
KW - newborn
KW - phosphorescence
UR - http://www.scopus.com/inward/record.url?scp=0030602028&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030602028&partnerID=8YFLogxK
U2 - 10.1016/S0006-8993(96)00909-2
DO - 10.1016/S0006-8993(96)00909-2
M3 - Article
C2 - 9001718
AN - SCOPUS:0030602028
SN - 0006-8993
VL - 741
SP - 160
EP - 165
JO - Brain Research
JF - Brain Research
IS - 1-2
ER -