Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation

Hsia Wei Liu, Chih Hwa Chen, Ching Lin Tsai, Ging Ho Hsiue

研究成果: 雜誌貢獻文章同行評審

43 引文 斯高帕斯(Scopus)

摘要

We propose a model of artificial juxtacrine signaling for the controlled release of recombinant human bone morphogenetic protein-2 (rhBMP-2) suitable for guided bone regeneration. A porous three-dimensional scaffold of poly-(lactide-co-glycolide) was fabricated by means of gel molding and particulate leaching. Collagen immobilization onto the scaffold surface was produced by performing photo-induced graft polymerization of acrylic acid, and rhBMP-2 was tethered to the collagenous surface by covalent conjugation. On pharmacokinetic analysis, in vitro enzyme-linked immunosorbent and alkaline phosphatase assays revealed sustained, slow release of rhBMP-2 over 28 days, with a cumulative release of one third of the initial load diffusing out of the scaffold. Conjugation of rhBMP-2 inhibited the free lateral diffusion and internalization of the activated complex of rhBMP-2 and the bone morphogenetic protein receptor. Osteoprogenitor cells were used as bone precursors to determine the expression of biosignaling growth factor in regulating cell proliferation and differentiation. To identify the phenotype of cells seeded on the rhBMP-2-conjugated scaffold, cellular activity was evaluated with scanning electron microscopy and with viability, histological, and immunohistochemical testing. The rhBMP-2-conjugated scaffold prolonged stimulation of intracellular signal proteins in cells. Enhancement of cell growth and differentiation was considered a consequence of juxtacrine signaling transduction. Animal studies of rhBMP-2-containing filling implants showed evidence of resorption and de novo bone formation. The present study revealed the potential of biomimetic constructs with co-immobilized adhesion and growth factors to induce osteoinduction and osteogenesis. Such constructs may be useful as synthetic bone-graft materials in orthopaedic tissue engineering.

原文英語
頁(從 - 到)825-836
頁數12
期刊Bone
39
發行號4
DOIs
出版狀態已發佈 - 10月 2006
對外發佈

ASJC Scopus subject areas

  • 內分泌學、糖尿病和代謝
  • 生理學
  • 組織學

指紋

深入研究「Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation」主題。共同形成了獨特的指紋。

引用此