TY - JOUR
T1 - Synergistic interaction between the HDAC inhibitor, MPT0E028, and sorafenib in liver cancer cells in vitro and in vivo
AU - Chen, Chun Han
AU - Chen, Mei Chuan
AU - Wang, Jing Chi
AU - Tsai, An Chi
AU - Chen, Ching Shih
AU - Liou, Jing Ping
AU - Pan, Shiow Lin
AU - Teng, Che Ming
PY - 2014
Y1 - 2014
N2 - Purpose: To investigate the antitumor activities of a histone deacetylase (HDAC) inhibitor, MPT0E028, plus sorafenib in liver cancer cells in vitro and in vivo. Experimental Design: Different liver cancer cell lines were exposed to sorafenib in the presence or absence of MPT0E028, and cell viability was determined byMTTassay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and Western blot analysis. The Hep3B xenograft model was used to examine the antitumor activity in vivo. Results: Our data indicate that sorafenib and MPT0E028 synergistically reduced cell viability in liver cancer cells, and also markedly induced apoptotic cell death in these cells, as evidenced by the cleavage of caspase-3, PARP, and DNA fragmentation. MPT0E028 altered the global modifications of histone and nonhistone proteins regardless of the presence of sorafenib. However, sorafenib blocked MPT0E028- induced Erk activation and its downstream signaling cascades, such as Stat3 phosphorylation (Ser727) and Mcl-1 upregulation. Ectopic expression of constitutively active Mek successively reversed the apoptosis triggered by the combined treatment. Pharmacologic inhibition of Mek by PD98059 potentiated MPT0E028-induced apoptosis, suggesting that the synergistic interaction between MPT0E028 and sorafenib occurs at least partly through inhibition of Erk signaling. The data demonstrated that transcriptional activation of fibroblast growth factor receptor 3 (FGFR3) contributes to MPT0E028-mediated Erk phosphorylation. Finally, MPT0E028 plus sorafenib significantly improved the tumor growth delay (TGD) in a Hep3B xenograft model. Conclusions: These findings suggest that MPT0E028 in combination with sorafenib has significant antihepatocellular carcinoma activity in preclinical models, potentially suggesting a novel therapeutic strategy for patients with advanced hepatocellular carcinoma.
AB - Purpose: To investigate the antitumor activities of a histone deacetylase (HDAC) inhibitor, MPT0E028, plus sorafenib in liver cancer cells in vitro and in vivo. Experimental Design: Different liver cancer cell lines were exposed to sorafenib in the presence or absence of MPT0E028, and cell viability was determined byMTTassay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and Western blot analysis. The Hep3B xenograft model was used to examine the antitumor activity in vivo. Results: Our data indicate that sorafenib and MPT0E028 synergistically reduced cell viability in liver cancer cells, and also markedly induced apoptotic cell death in these cells, as evidenced by the cleavage of caspase-3, PARP, and DNA fragmentation. MPT0E028 altered the global modifications of histone and nonhistone proteins regardless of the presence of sorafenib. However, sorafenib blocked MPT0E028- induced Erk activation and its downstream signaling cascades, such as Stat3 phosphorylation (Ser727) and Mcl-1 upregulation. Ectopic expression of constitutively active Mek successively reversed the apoptosis triggered by the combined treatment. Pharmacologic inhibition of Mek by PD98059 potentiated MPT0E028-induced apoptosis, suggesting that the synergistic interaction between MPT0E028 and sorafenib occurs at least partly through inhibition of Erk signaling. The data demonstrated that transcriptional activation of fibroblast growth factor receptor 3 (FGFR3) contributes to MPT0E028-mediated Erk phosphorylation. Finally, MPT0E028 plus sorafenib significantly improved the tumor growth delay (TGD) in a Hep3B xenograft model. Conclusions: These findings suggest that MPT0E028 in combination with sorafenib has significant antihepatocellular carcinoma activity in preclinical models, potentially suggesting a novel therapeutic strategy for patients with advanced hepatocellular carcinoma.
UR - http://www.scopus.com/inward/record.url?scp=84895815986&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84895815986&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-12-3909
DO - 10.1158/1078-0432.CCR-12-3909
M3 - Article
C2 - 24520095
AN - SCOPUS:84895815986
SN - 1078-0432
VL - 20
SP - 1274
EP - 1287
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 5
ER -