Substrate Specificities of Variants of Barley (1,3)- and (1,3;1,4)-β-d-Glucanases Resulting from Mutagenesis and Segment Hybridization

Mu Rong Kao, Parker Jake , Oehme Daniel, Shu Chieh Chang, Lin Chen Cheng, Damao Wang, Vaibhav Srivastava, John E. Wagner, Philip J. Harris, Yves Hsieh

研究成果: 雜誌貢獻文章同行評審

摘要

Barley (1,3;1,4)-β-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-β-d-glucanase, enabling the hydrolysis of (1,3;1,4)-β-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-β-d-glucan endohydrolase [(1,3;1,4)-β-d-glucanase] isoenzyme EII (HvEII) and (1,3)-β-d-glucan endohydrolase [(1,3)-β-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-β-d-glucanase and one variant that hydrolyzed both (1,3)-β-d-glucans and (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-β-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-β-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-β-d-glucans or (1,3)-β-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-β-d-glucans and (1,3)-β-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.
原文英語
期刊Biochemistry
DOIs
出版狀態已發佈 - 4月 10 2024

指紋

深入研究「Substrate Specificities of Variants of Barley (1,3)- and (1,3;1,4)-β-d-Glucanases Resulting from Mutagenesis and Segment Hybridization」主題。共同形成了獨特的指紋。

引用此