Severe acute respiratory syndrome coronavirus (Sars-cov)-2 infection induces dysregulation of immunity: In silico gene expression analysis

Yen Hung Wu, I. Jeng Yeh, Nam Nhut Phan, Meng Chi Yen, Hsin Liang Liu, Chih Yang Wang, Hui Ping Hsu

研究成果: 雜誌貢獻文章同行評審

14 引文 斯高帕斯(Scopus)

摘要

Highly pathogenic coronaviruses (CoVs) induce acute respiratory distress syndrome, and the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused a pandemic since late 2019. The diversity of clinical manifestations after SARS-CoV-2 infection results in great challenges to diagnose CoV disease 2019 (COVID-19). There is a growing body of published research on this topic; however, effective medications are still undergoing a long process of being assessed. In the search for potential genetic targets for this infection, we applied a holistic bioinformatics approach to study alterations of gene signatures between SARS-CoV-2-infected cells and mock-infected controls. Two different kinds of lung epithelial cells, A549 with angiotensin-converting enzyme 2 (ACE2) overexpression and normal human bronchial epithelial (NHBE) cells, were infected with SARS-CoV-2. We performed bioinformatics analyses of RNA-sequencing in this study. Through a Venn diagram, Database for Annotation, Visualization and Integrated Discovery, Gene Ontology, Ingenuity Pathway Analysis, and Gene Set Enrichment Analysis, the pathways and networks were constructed from commonly upregulated genes in SARS-CoV-2-infected lung epithelial cells. Genes associated with immune-related pathways, responses of host cells after intracellular infection, steroid hormone biosynthesis, receptor signaling, and the complement system were enriched. Dysregulation of the immune system and malfunction of interferon contribute to a failure to kill SARS-CoV-2 and exacerbate respiratory distress in severely ill patients. Current findings from this study provide a comprehensive investigation of SARS-CoV-2 infection using high-throughput technology.

原文英語
頁(從 - 到)1143-1152
頁數10
期刊International Journal of Medical Sciences
18
發行號5
DOIs
出版狀態已發佈 - 2021

ASJC Scopus subject areas

  • 一般醫學

指紋

深入研究「Severe acute respiratory syndrome coronavirus (Sars-cov)-2 infection induces dysregulation of immunity: In silico gene expression analysis」主題。共同形成了獨特的指紋。

引用此