Scale-free dynamics of core-periphery topography

Philipp Klar, Yasir Çatal, Robert Langner, Zirui Huang, Georg Northoff

研究成果: 雜誌貢獻文章同行評審

4 引文 斯高帕斯(Scopus)

摘要

The human brain's cerebral cortex exhibits a topographic division into higher-order transmodal core and lower-order unimodal periphery regions. While timescales between the core and periphery region diverge, features of their power spectra, especially scale-free dynamics during resting-state and their mdulation in task states, remain unclear. To answer this question, we investigated the ~1/f-like pink noise manifestation of scale-free dynamics in the core-periphery topography during rest and task states applying infra-slow inter-trial intervals up to 1 min falling inside the BOLD's infra-slow frequency band. The results demonstrate (1) higher resting-state power-law exponent (PLE) in the core compared to the periphery region; (2) significant PLE increases in task across the core and periphery regions; and (3) task-related PLE increases likely followed the task's atypically low event rates, namely the task's periodicity (inter-trial interval = 52–60 s; 0.016–0.019 Hz). A computational model and a replication dataset that used similar infra-slow inter-trial intervals provide further support for our main findings. Altogether, the results show that scale-free dynamics differentiate core and periphery regions in the resting-state and mediate task-related effects.

原文英語
頁(從 - 到)1997-2017
頁數21
期刊Human Brain Mapping
44
發行號5
DOIs
出版狀態已發佈 - 4月 1 2023

ASJC Scopus subject areas

  • 解剖學
  • 放射與超音波技術
  • 放射學、核子醫學和影像學
  • 神經內科
  • 神經病學(臨床)

指紋

深入研究「Scale-free dynamics of core-periphery topography」主題。共同形成了獨特的指紋。

引用此