Roles of ionotropic glutamate receptors in early developing neurons derived from the P19 mouse cell line

Yi-Hsuan Lee, Chun Hua Lin, Li Wen Hsu, Ssu Yao Hu, Wen Te Hsiao, Yuan Soon Ho

研究成果: 雜誌貢獻文章同行評審

8 引文 斯高帕斯(Scopus)

摘要

We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the α-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75NTR expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.
原文英語
頁(從 - 到)199-207
頁數9
期刊Journal of Biomedical Science
10
發行號2
DOIs
出版狀態已發佈 - 2003

ASJC Scopus subject areas

  • 生物化學、遺傳與分子生物學 (全部)

指紋

深入研究「Roles of ionotropic glutamate receptors in early developing neurons derived from the P19 mouse cell line」主題。共同形成了獨特的指紋。

引用此