Rnase a promotes proliferation of neuronal progenitor cells via an ERK-dependent pathway

Hsin Yu Liu, Chiung Ya Chen, Yun Fen Hung, Hong Ru Lin, Hsu Wen Chao, Pu Yun Shih, Chi Ning Chuang, Wei Ping Li, Tzyy Nan Huang, Yi Ping Hsueh

研究成果: 雜誌貢獻文章同行評審

5 引文 斯高帕斯(Scopus)

摘要

Members of the ribonuclease A (RNase A) superfamily regulate various physiological processes. RNase A, the best-studied member of the RNase A superfamily, is widely expressed in different tissues, including brains. We unexpectedly found that RNase A can trigger proliferation of neuronal progenitor cells (NPC) both in vitro and in vivo. RNase A treatment induced cell proliferation in dissociated neuronal cultures and increased cell mass in neurosphere cultures. BrdU (5-Bromo-2'-Deoxyuridine) labeling confirmed the effect of RNase A on cell proliferation. Those dividing cells were Nestin- and SOX2-positive, suggesting that RNase A triggers NPC proliferation. The proliferation inhibitor Ara-C completely suppressed the effect of RNase A on NPC counts, further supporting that RNase A increases NPC number mainly by promoting proliferation. Moreover, we found that RNase A treatment increased ERK phosphorylation and blockade of the ERK pathway inhibited the effect of RNase A on NPC proliferation. Intracerebroventricular injection of RNase A into mouse brain increased the population of 5-ethynyl-2'-deoxyuridine (EdU) or BrdU-labeled cells in the subventricular zone. Those RNase A-induced NPCs were able to migrate into other brain areas, including hippocampus, amygdala, cortex, striatum, and thalamus. In conclusion, our study shows that RNase A promotes proliferation of NPCs via an ERK-dependent pathway and further diversifies the physiological functions of the RNase A family.
原文英語
文章編號428
期刊Frontiers in Molecular Neuroscience
11
DOIs
出版狀態已發佈 - 11月 26 2018
對外發佈

ASJC Scopus subject areas

  • 分子生物學
  • 細胞與分子神經科學

指紋

深入研究「Rnase a promotes proliferation of neuronal progenitor cells via an ERK-dependent pathway」主題。共同形成了獨特的指紋。

引用此