TY - JOUR
T1 - Rivaroxaban modulates electrical and mechanical characteristics of left atrium
AU - Chang, Chien Jung
AU - Chen, Yao Chang
AU - Lin, Yung Kuo
AU - Huang, Jen Hung
AU - Chen, Shih Ann
AU - Chen, Yi Jen
PY - 2013
Y1 - 2013
N2 - Background: Rivaroxaban reduces stroke in patients with atrial fibrillation (AF). Left atrium (LA) plays a critical role in the pathophysiology of AF. However, the electromechanical effects of rivaroxaban on LA are not clear. Results: Conventional microelectrodes and a whole-cell patch-clamp were used to record the action potentials (APs) and ionic currents in rabbit LA preparations and isolated single LA cardiomyocytes before and after the administration of rivaroxaban. Rivaroxaban (10, 30, 100, and 300 nM) concentration-dependently reduced LA (n = 7) AP durations at 90% repolarization (APD§ssub§ 90§esub§) from 76 ± 2 to 79 ± 3, 67 ± 4 (P < 0.05, vs. control), 59 ± 5, (P < 0.01, vs. control), and 56 ± 4 ms (P < 0.005, vs. control), respectively. Rivaroxaban (10, 30, 100, and 300 nM) concentration-dependently increased the LA (n = 7) diastolic tension by 351 ± 69 (P < 0.05, vs. control), 563 ± 136 (P < 0.05, vs. control), 582 ± 119 (P < 0.05, vs. control), and 603 ± 108 mg (P < 0.005, vs. control), respectively, but did not change LA contractility. In the presence of L-NAME (100 μM) and indomethacin (10 μM), additional rivaroxaban (300 nM) treatment did not significantly further increase the LA (n = 7) diastolic tension, but shortened the APD§ssub§90§esub§ from 73 ± 2 to 60 ± 6 ms (P < 0.05, vs. control). Rivaroxaban (100 nM) increased the L-type calcium current and ultra-rapid delayed rectifier potassium current, but did not change the transient outward potassium current in isolated LA cardiomyocytes. Conclusions: Rivaroxaban modulates LA electrical and mechanical characteristics with direct ionic current effects.
AB - Background: Rivaroxaban reduces stroke in patients with atrial fibrillation (AF). Left atrium (LA) plays a critical role in the pathophysiology of AF. However, the electromechanical effects of rivaroxaban on LA are not clear. Results: Conventional microelectrodes and a whole-cell patch-clamp were used to record the action potentials (APs) and ionic currents in rabbit LA preparations and isolated single LA cardiomyocytes before and after the administration of rivaroxaban. Rivaroxaban (10, 30, 100, and 300 nM) concentration-dependently reduced LA (n = 7) AP durations at 90% repolarization (APD§ssub§ 90§esub§) from 76 ± 2 to 79 ± 3, 67 ± 4 (P < 0.05, vs. control), 59 ± 5, (P < 0.01, vs. control), and 56 ± 4 ms (P < 0.005, vs. control), respectively. Rivaroxaban (10, 30, 100, and 300 nM) concentration-dependently increased the LA (n = 7) diastolic tension by 351 ± 69 (P < 0.05, vs. control), 563 ± 136 (P < 0.05, vs. control), 582 ± 119 (P < 0.05, vs. control), and 603 ± 108 mg (P < 0.005, vs. control), respectively, but did not change LA contractility. In the presence of L-NAME (100 μM) and indomethacin (10 μM), additional rivaroxaban (300 nM) treatment did not significantly further increase the LA (n = 7) diastolic tension, but shortened the APD§ssub§90§esub§ from 73 ± 2 to 60 ± 6 ms (P < 0.05, vs. control). Rivaroxaban (100 nM) increased the L-type calcium current and ultra-rapid delayed rectifier potassium current, but did not change the transient outward potassium current in isolated LA cardiomyocytes. Conclusions: Rivaroxaban modulates LA electrical and mechanical characteristics with direct ionic current effects.
KW - Atrial fibrillation
KW - Cyclooxygenase
KW - Factor Xa
KW - Nitric oxide synthase
KW - Rivaroxaban
UR - http://www.scopus.com/inward/record.url?scp=84874932457&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874932457&partnerID=8YFLogxK
U2 - 10.1186/1423-0127-20-17
DO - 10.1186/1423-0127-20-17
M3 - Article
C2 - 23497194
AN - SCOPUS:84874932457
SN - 1021-7770
VL - 20
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
IS - 1
M1 - 17
ER -