Rest-task modulation of fMRI-derived global signal topography is mediated by transient coactivation patterns

Jianfeng Zhang, Zirui Huang, Shankar Tumati, Georg Northoff

研究成果: 雜誌貢獻文章同行評審

43 引文 斯高帕斯(Scopus)

摘要

Recent resting-state functional MRI (fMRI) studies have revealed that the global signal (GS) exhibits a nonuniform spatial distribution across the gray matter. Whether this topography is informative remains largely unknown. We therefore tested rest-task modulation of GS topography by analyzing static GS correlation and dynamic coactivation patterns in a large sample of an fMRI dataset (n = 837) from the Human Connectome Project. The GS topography in the resting state and in seven different tasks was first measured by correlating the GS with the local time series (GSCORR). In the resting state, high GSCORR was observed mainly in the primary sensory and motor regions, whereas low GSCORR was seen in the association brain areas. This pattern changed during the seven tasks, with mainly decreased GSCORR in sensorimotor cortex. Importantly, this rest-task modulation of GSCORR could be traced to transient coactivation patterns at the peak period of GS (GS-peak). By comparing the topography of GSCORR and respiration effects, we observed that the topography of respiration mimicked the topography of GS in the resting state, whereas both differed during the task states; because of such partial dissociation, we assume that GSCORR could not be equated with a respiration effect. Finally, rest-task modulation of GS topography could not be exclusively explained by other sources of physiological noise. Together, we here demonstrate the informative nature of GS topography by showing its rest-task modulation, the underlying dynamic coactivation patterns, and its partial dissociation from respiration effects during task states.

原文英語
文章編號3000733
頁(從 - 到)e3000733
期刊PLoS Biology
18
發行號7
DOIs
出版狀態已發佈 - 7月 1 2020

ASJC Scopus subject areas

  • 一般神經科學
  • 一般生物化學,遺傳學和分子生物學
  • 一般免疫學和微生物學
  • 一般農業與生物科學

指紋

深入研究「Rest-task modulation of fMRI-derived global signal topography is mediated by transient coactivation patterns」主題。共同形成了獨特的指紋。

引用此