摘要
原文 | 英語 |
---|---|
頁(從 - 到) | 1569-1579 |
頁數 | 11 |
期刊 | Clinical Neurophysiology |
卷 | 122 |
發行號 | 8 |
DOIs | |
出版狀態 | 已發佈 - 2011 |
對外發佈 | 是 |
指紋
深入研究「Reorganization of functional connectivity during the motor task using EEG time-frequency cross mutual information analysis」主題。共同形成了獨特的指紋。引用此
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
於: Clinical Neurophysiology, 卷 122, 編號 8, 2011, p. 1569-1579.
研究成果: 雜誌貢獻 › 文章 › 同行評審
}
TY - JOUR
T1 - Reorganization of functional connectivity during the motor task using EEG time-frequency cross mutual information analysis
AU - Lu, Chia-Feng
AU - Teng, Shin
AU - Hung, Chih-I.
AU - Tseng, Po-Jung
AU - Lin, Liang-Ta
AU - Lee, Po-Lei
AU - Wu, Yu-Te
N1 - 被引用次數:8 Export Date: 31 March 2016 CODEN: CNEUF 通訊地址: Wu, Y.-T.; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong Street, Section 2, Pei-Tou, Taipei 112, Taiwan; 電子郵件: ytwu@ym.edu.tw 參考文獻: Andrew, C., Pfurtscheller, G., Lack of bilateral coherence of post-movement central beta oscillations in the human electroencephalogram (1999) Neurosci Lett, 273, pp. 89-92; Attwell, D., Laughlin, S.B., An energy budget for signaling in the grey matter of the brain (2001) J Cereb Blood Flow Metab, 21, pp. 1133-1145; Bair, W., Koch, C., Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey (1996) Neural Comput, 8, pp. 1185-1202; Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., Investigations into resting-state connectivity using independent component analysis (2005) Philos Trans R Soc B-Biol Sci, 360, pp. 1001-1013; Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) J R Stat Soc Ser B-Stat Methodol, 57, pp. 289-300; Buchel, C., Coull, J.T., Friston, K.J., The predictive value of changes in effective connectivity for human learning (1999) Science, 283, pp. 1538-1541; Burgess, A.P., Ali, L., Functional connectivity of gamma EEG activity is modulated at low frequency during conscious recollection (2002) Int J Psychophysiol, 46, pp. 91-100; Chen, C.C., Hsieh, J.C., Wu, Y.Z., Lee, P.L., Chen, S.S., Niddam, D.M., Mutual-information-based approach for neural connectivity during self-paced finger lifting task (2008) Hum Brain Mapp, 29, pp. 265-280; Franceschini, M.A., Boas, D.A., Noninvasive measurement of neuronal activity with near-infrared optical imaging (2004) Neuroimage, 21, pp. 372-386; Fransson, P., Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis (2005) Hum Brain Mapp, 26, pp. 15-29; Fransson, P., Skiöld, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., Resting-state networks in the infant brain (2007) Proc Natl Acad Sci USA, 104, pp. 15531-15536; Fraser, A.M., Swinney, H.L., Independent coordinates for strange attractors from mutual information (1986) Phys Rev A, 33, p. 1134; Friston, K.J., Models of brain function in neuroimaging (2005) Annu Rev Psychol, 56, pp. 57-87; Gerloff, C., Richard, J., Hadley, J., Schulman, A., Honda, M., Hallett, M., Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements (1998) Brain, 121, pp. 1513-1531; Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis (2003) Proc Natl Acad Sci USA, 100, pp. 253-258; Jeong, J., Gore, J.C., Peterson, B.S., Mutual information analysis of the EEG in patients with Alzheimer's disease (2001) Clin Neurophysiol, 112, pp. 827-835; Jiang, T., He, Y., Zang, Y., Weng, X., Modulation of functional connectivity during the resting state and the motor task (2004) Hum Brain Mapp, 22, pp. 63-71; Johnson-Frey, S.H., Newman-Norlund, R., Grafton, S.T., A distributed left hemisphere network active during planning of everyday tool use skills (2005) Cereb Cortex, 15, pp. 681-695; Jokisch, D., Jensen, O., Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream (2007) J Neurosci, 27, pp. 3244-3251; Jung, R.E., Haier, R.J., The parieto-frontal integration theory (P-FIT) of intelligence. converging neuroimaging evidence (2007) Behav Brain Sci, 30, pp. 135-154; Lee, P.-L., Wu, Y.-T., Chen, L.-F., Chen, Y.-S., Cheng, C.-M., Yeh, T.-C., ICA-based spatiotemporal approach for single-trial analysis of post movement MEG beta synchronization [small star, filled] (2003) Neuroimage, 20, pp. 2010-2030; Lennie, P., The cost of cortical computation (2003) Curr Biol, 13, pp. 493-497; Leocani, L., Toro, C., Manganotti, P., Zhuang, P., Hallett, M., Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements (1997) Electroencephalogr Clin Neurophysiol, 104, pp. 199-206; Liu, Y., Gao, J.-H., Liotti, M., Pu, Y., Fox, P.T., Temporal dissociation of parallel processing in the human subcortical outputs (1999) Nature, 400, pp. 364-367; Müller, K.-R., Krauledat, M., Dornhege, G., Curio, G., Blankertz, B., Machine learning techniques for brain-computer interfaces (2004) Biomed Tech, 49, pp. 11-22; Müller, M.M., Gruber, T., Keil, A., Modulation of induced gamma band activity in the human EEG by attention and visual information processing (2000) Int J Psychophysiol, 38, pp. 283-299; Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., Tononi, G., Breakdown of cortical effective connectivity during sleep (2005) Science, 309, pp. 2228-2232; Micheloyannis, S., Pachou, E., Stam, C.J., Vourkas, M., Erimaki, S., Tsirka, V., Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis (2006) Neurosci Lett, 402, pp. 273-277; Naghavi, H.R., Nyberg, L., Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? (2005) Conscious Cogn, 14, pp. 390-425; Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B., EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales (1997) Electroencephalogr Clin Neurophysiol, 103, pp. 499-515; Pfurtscheller, G., Lopes da Silva, F.H., Event-related EEG/MEG synchronization and desynchronization: basic principles (1999) Clin Neurophysiol, 110, pp. 1842-1857; Pfurtscheller, G., Neuper, C., Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man (1994) Neurosci Lett, 174, pp. 93-96; Pfurtscheller, G., Stancák, A., Neuper, C., Post-movement beta synchronization. A correlate of an idling motor area? (1996) Electroencephalogr Clin Neurophysiol, 98, pp. 281-293; Pfurtscheller, G., Zalaudek, K., Neuper, C., Event-related beta synchronization after wrist, finger and thumb movement (1998) Electroencephalogr Clin Neurophysiol, 109, pp. 154-160; Popivanov, D., Dushanova, J., Non-linear EEG dynamic changes and their probable relation to voluntary movement organization (1999) Neuroreport, 10, pp. 1397-1401; Raichle, M.E., Mintun, M.A., Brain work and brain imaging (2006) Annu Rev Neurosci, 29, pp. 449-476; Rappelsberger, P., Pfurtscheller, G., Filz, O., Calculation of event-related coherence-a new method to study short-lasting coupling between brain areas (1994) Brain Topogr, 7, pp. 121-127; Sehatpour, P., Molholm, S., Schwartz, T.H., Mahoney, J.R., Mehta, A.D., Javitt, D.C., A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing (2008) Proc Natl Acad Sci USA, 105, pp. 4399-4404; Serrien, D.J., Ivry, R.B., Swinnen, S.P., Dynamics of hemispheric specialization and integration in the context of motor control (2006) Nat Rev Neurosci, 7, pp. 160-166; Shannon, C., A mathematical theory of communication (1948) Bell Syst Tech J, 27, pp. 379-426; Sheline, Y.I., Price, J.L., Yan, Z., Mintun, M.A., Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus (2010) Proc Natl Acad Sci USA, 107, pp. 11020-11025; Shulman, R.G., Rothman, D.L., Behar, K.L., Hyder, F., Energetic basis of brain activity: implications for neuroimaging (2004) Trends Neurosci, 27, pp. 489-495; Sklar, B., Hanley, J., Simmons, W.W., An EEG experiment aimed toward identifying dyslexic children (1972) Nature, 240, pp. 414-416; Sridharan, D., Levitin, D.J., Menon, V., A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks (2008) Proc Natl Acad Sci USA, 105, pp. 12569-12574; Vialatte, F.B., Martin, C., Dubois, R., Haddad, J., Quenet, B., Gervais, R., A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics (2007) Neural Netw, 20, pp. 194-209; Worden, M.S., Foxe, J.J., Wang, N., Simpson, G.V., Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha -band electroencephalography increases over occipital cortex (2000) J Neurosci, 20 (RC63), pp. 1-6
PY - 2011
Y1 - 2011
N2 - Objective: This study investigates the functional organization of cortical networks during self-determinant arm movement using the time sequences of the alpha (8-12. Hz) and beta (16-25. Hz) bands. Methods: The time-frequency cross mutual information (TFCMI) method was used to estimate the EEG functional connectivity in the alpha and beta bands for seven healthy subjects during four functional states: the resting, preparing, movement-onset, and movement-offset states. Results: In the preparing state, the maintenance of the central-executive network (CEN, prefrontal-parietal connection) suppressed the motor network in the alpha band to plan the next movement, whereas the CEN was deactivated in the beta band to retain visual attention (the frontal-occipital connection). A significant decrease of the CEN in the alpha band occurred after a visual cue in the movement-onset state, followed by a significant increase in motor-network connectivity in the beta band until the movement-offset state. Conclusions: The temporal-spectral modulation mechanism allows the brain to manifest multiple functions subject to energy budget. Significance: The TFCMI method was employed to estimate EEG functional connectivity and effectively demonstrate the reorganization process between four functional states. © 2011 International Federation of Clinical Neurophysiology.
AB - Objective: This study investigates the functional organization of cortical networks during self-determinant arm movement using the time sequences of the alpha (8-12. Hz) and beta (16-25. Hz) bands. Methods: The time-frequency cross mutual information (TFCMI) method was used to estimate the EEG functional connectivity in the alpha and beta bands for seven healthy subjects during four functional states: the resting, preparing, movement-onset, and movement-offset states. Results: In the preparing state, the maintenance of the central-executive network (CEN, prefrontal-parietal connection) suppressed the motor network in the alpha band to plan the next movement, whereas the CEN was deactivated in the beta band to retain visual attention (the frontal-occipital connection). A significant decrease of the CEN in the alpha band occurred after a visual cue in the movement-onset state, followed by a significant increase in motor-network connectivity in the beta band until the movement-offset state. Conclusions: The temporal-spectral modulation mechanism allows the brain to manifest multiple functions subject to energy budget. Significance: The TFCMI method was employed to estimate EEG functional connectivity and effectively demonstrate the reorganization process between four functional states. © 2011 International Federation of Clinical Neurophysiology.
KW - Alpha
KW - Beta
KW - EEG
KW - Motor task
KW - Reorganization
KW - TFCMI
KW - alpha rhythm
KW - article
KW - beta rhythm
KW - brain cortex
KW - electroencephalography
KW - executive function
KW - female
KW - human
KW - human experiment
KW - male
KW - methodology
KW - motor performance
KW - normal human
KW - priority journal
KW - task performance
KW - time frequency cross mutual information method
KW - vision
KW - Adult
KW - Alpha Rhythm
KW - Arm
KW - Beta Rhythm
KW - Brain
KW - Brain Mapping
KW - Electroencephalography
KW - Female
KW - Functional Laterality
KW - Humans
KW - Male
KW - Movement
KW - Neural Pathways
KW - Photic Stimulation
KW - Time Factors
KW - Young Adult
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-79960236559&partnerID=40&md5=a67bee9beaaacd10b10f0126f77f52f8
UR - https://www.scopus.com/results/citedbyresults.uri?sort=plf-f&cite=2-s2.0-79960236559&src=s&imp=t&sid=18d8c4a04f7a6ce4d2d5e2b30c77e06c&sot=cite&sdt=a&sl=0&origin=recordpage&editSaveSearch=&txGid=99b392e260bd0d2ecdcf9b7d574523be
U2 - 10.1016/j.clinph.2011.01.050
DO - 10.1016/j.clinph.2011.01.050
M3 - Article
SN - 1388-2457
VL - 122
SP - 1569
EP - 1579
JO - Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control
JF - Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control
IS - 8
ER -