TY - JOUR
T1 - Regulation of inflammatory response by 3-methyladenine involves the coordinative actions on akt and glycogen synthase kinase 3β rather than autophagy
AU - Lin, Yi Chieh
AU - Kuo, Hsuan Cheng
AU - Wang, Jang Shiun
AU - Lin, Wan Wan
PY - 2012/10/15
Y1 - 2012/10/15
N2 - 3-Methyladenine (3-MA) is one of the most commonly used inhibitors in autophagy research today. However, rather than inhibiting class III PI3K that is involved in autophagy suppression, 3-MA might also interfere with class I PI3K and consequently augment autophagy flux. In this study, we aim to get a thorough understanding on the action mechanisms of 3-MA in TLR4-mediated inflammatory responses in RAW264.7 macrophages and, moreover, to decipher the action of 3-MA in modulation of autophagy. We found that 3-MA could enhance LPS-induced NF-κB activation and production of TNF-α, inducible NO synthase (iNOS), cyclooxygenase-2, IL-1β, and IL-12. In contrast, 3-MA suppressed LPS-induced IFN-β production and STAT signaling. Studies revealed that 3-MA can, through inhibition of Akt as a result of class I PI3K interference, positively regulate p38, JNK, and p65, but negatively regulate TANK-binding kinase 1 and IFN regulatory factor 3 mediated by TLR4. As glycogen synthase kinase 3β (GSK3β) is an important Akt substrate, we further explored its involvement in the actions of 3-MA. 3-MA was found to enhance LPS-induced NF-κB activation, iNOS, and pro-IL-1β expression, and these actions were reversed by either GSK3β inhibitors or small interfering GSK3β. Lastly, we demonstrated that 3-MA acts as an autophagy inducer in RAW264.7 macrophages, but the stimulating effects on NF-κB activation and iNOS and cyclooxygenase-2 expression were not affected in LPS-stimulated macrophages with small interfering autophagy protein-5 treatment. These results not only shed new light on the action mechanisms of 3-MA to differentially regulate inflammatory outcomes derived from TLR4-mediated MyD88 and Toll/IL-1R domain-containing adapter inducing IFN-β pathways, but also highlight the necessity to check autophagy status upon taking 3-MA as a general autophagy inhibitor.
AB - 3-Methyladenine (3-MA) is one of the most commonly used inhibitors in autophagy research today. However, rather than inhibiting class III PI3K that is involved in autophagy suppression, 3-MA might also interfere with class I PI3K and consequently augment autophagy flux. In this study, we aim to get a thorough understanding on the action mechanisms of 3-MA in TLR4-mediated inflammatory responses in RAW264.7 macrophages and, moreover, to decipher the action of 3-MA in modulation of autophagy. We found that 3-MA could enhance LPS-induced NF-κB activation and production of TNF-α, inducible NO synthase (iNOS), cyclooxygenase-2, IL-1β, and IL-12. In contrast, 3-MA suppressed LPS-induced IFN-β production and STAT signaling. Studies revealed that 3-MA can, through inhibition of Akt as a result of class I PI3K interference, positively regulate p38, JNK, and p65, but negatively regulate TANK-binding kinase 1 and IFN regulatory factor 3 mediated by TLR4. As glycogen synthase kinase 3β (GSK3β) is an important Akt substrate, we further explored its involvement in the actions of 3-MA. 3-MA was found to enhance LPS-induced NF-κB activation, iNOS, and pro-IL-1β expression, and these actions were reversed by either GSK3β inhibitors or small interfering GSK3β. Lastly, we demonstrated that 3-MA acts as an autophagy inducer in RAW264.7 macrophages, but the stimulating effects on NF-κB activation and iNOS and cyclooxygenase-2 expression were not affected in LPS-stimulated macrophages with small interfering autophagy protein-5 treatment. These results not only shed new light on the action mechanisms of 3-MA to differentially regulate inflammatory outcomes derived from TLR4-mediated MyD88 and Toll/IL-1R domain-containing adapter inducing IFN-β pathways, but also highlight the necessity to check autophagy status upon taking 3-MA as a general autophagy inhibitor.
UR - http://www.scopus.com/inward/record.url?scp=84867294606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867294606&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1102739
DO - 10.4049/jimmunol.1102739
M3 - Article
C2 - 22972931
AN - SCOPUS:84867294606
SN - 0022-1767
VL - 189
SP - 4154
EP - 4164
JO - Journal of Immunology
JF - Journal of Immunology
IS - 8
ER -