TY - JOUR
T1 - Regulation of human platelet activation and prevention of arterial thrombosis in mice by auraptene through inhibition of nf-κb pathway
AU - Hsia, Chih Wei
AU - Wu, Ming Ping
AU - Shen, Ming Yi
AU - Hsia, Chih Hsuan
AU - Chung, Chi Li
AU - Sheu, Joen Rong
N1 - Funding Information:
Funding: This work was supported by grants from the Ministry of Science and Technology of Taiwan (MOST107-2320-B-038-035-MY2 and MOST108-2320-B-038-031-MY3), and Chi-Mei Medical Center-Taipei Medical University (106CM-TMU-12).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7
Y1 - 2020/7
N2 - Platelets are major players in the occurrence of cardiovascular diseases. Auraptene is the most abundant coumarin derivative from plants, and it has been demonstrated to possess a potent capacity to inhibit platelet activation. Although platelets are anucleated cells, they also express the transcription factor, nuclear factor-κB (NF-κB), that may exert non-genomic functions in platelet activation. In the current study, we further investigated the inhibitory roles of auraptene in NF-κB-mediated signal events in platelets. MG-132 (an inhibitor of proteasome) and BAY11-7082 (an inhibitor of IκB kinase; IKK), obviously inhibited platelet aggregation; however, BAY11-7082 exhibited more potent activity than MG-132 in this reaction. The existence of NF-κB (p65) in platelets was observed by confocal microscopy, and auraptene attenuated NF-κB activation such as IκBα and p65 phosphorylation and reversed IκBα degradation in collagen-activated platelets. To investigate cellular signaling events between PLCγ2-PKC and NF-κB, we found that BAY11-7082 abolished PLCγ2-PKC activation; nevertheless, neither U73122 nor Ro31-8220 had effect on NF-κB activation. Furthermore, both auraptene and BAY11-7082 significantly diminished HO• formation in activated platelets. For in vivo study, auraptene prolonged the occlusion time of platelet plug in mice. In conclusion, we propose a novel inhibitory pathway of NF-κB-mediated PLCγ2-PKC activation by auraptene in human platelets, and further supported that auraptene possesses potent activity for thromboembolic diseases.
AB - Platelets are major players in the occurrence of cardiovascular diseases. Auraptene is the most abundant coumarin derivative from plants, and it has been demonstrated to possess a potent capacity to inhibit platelet activation. Although platelets are anucleated cells, they also express the transcription factor, nuclear factor-κB (NF-κB), that may exert non-genomic functions in platelet activation. In the current study, we further investigated the inhibitory roles of auraptene in NF-κB-mediated signal events in platelets. MG-132 (an inhibitor of proteasome) and BAY11-7082 (an inhibitor of IκB kinase; IKK), obviously inhibited platelet aggregation; however, BAY11-7082 exhibited more potent activity than MG-132 in this reaction. The existence of NF-κB (p65) in platelets was observed by confocal microscopy, and auraptene attenuated NF-κB activation such as IκBα and p65 phosphorylation and reversed IκBα degradation in collagen-activated platelets. To investigate cellular signaling events between PLCγ2-PKC and NF-κB, we found that BAY11-7082 abolished PLCγ2-PKC activation; nevertheless, neither U73122 nor Ro31-8220 had effect on NF-κB activation. Furthermore, both auraptene and BAY11-7082 significantly diminished HO• formation in activated platelets. For in vivo study, auraptene prolonged the occlusion time of platelet plug in mice. In conclusion, we propose a novel inhibitory pathway of NF-κB-mediated PLCγ2-PKC activation by auraptene in human platelets, and further supported that auraptene possesses potent activity for thromboembolic diseases.
KW - Arterial thrombosis
KW - Auraptene
KW - Human platelet
KW - Hydroxyl radical
KW - NF-κB
KW - PLCγ2-PKC activation
UR - http://www.scopus.com/inward/record.url?scp=85087824409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087824409&partnerID=8YFLogxK
U2 - 10.3390/ijms21134810
DO - 10.3390/ijms21134810
M3 - Article
C2 - 32646046
AN - SCOPUS:85087824409
SN - 1661-6596
VL - 21
SP - 1
EP - 14
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 13
M1 - 4810
ER -