TY - JOUR
T1 - Real-world application of targeted next-generation sequencing for identifying molecular variants in Asian non-small-cell lung cancer
AU - Wang, Fang Yu
AU - Yeh, Yi Chen
AU - Lin, Shin Ying
AU - Wang, Shu Ying
AU - Chen, Paul Chih Hsueh
AU - Chou, Teh Ying
AU - Ho, Hsiang Ling
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025/12
Y1 - 2025/12
N2 - Background: The advent of novel therapeutic agents has advanced biomarker characterization in non-small-cell lung cancer (NSCLC), driving increased adoption of next-generation sequencing (NGS) technologies for molecular testing. However, comprehensive data addressing the clinical utility of different NGS platforms for NSCLC remains limited. Methods: This retrospective study analyzed real-world data from 478 Taiwanese NSCLC patients over five years, using the Oncomine Focus Assay (OFA) to assess genetic alterations. The evaluation focused on assay accuracy, limit of detection (LoD), sequencing performance, and the genetic landscape of NSCLC. Results: The OFA achieved an NGS success rate of 80.5% (385/478), with tumor cell percentage, specimen source and FFPE block age identified as key factors affecting success. Quality metrics demonstrated robust sequencing performance, including 97.0 ± 9.6% on-target alignment, 94.7 ± 6.4% uniformity, and ≥ 500 × coverage for 98.0 ± 6.6% of amplicons. Among the 385 patients analyzed, 86.8% (334/385) were found to harbor pathogenic or likely pathogenic variants, of which 78.4% (262/334) were SNVs/Indels, 41.6% (139/334) were CNVs, 2.7% (9/334) were exon skipping alterations, and 10.2% (34/334) were gene fusions. Actionable driver mutations included EGFR mutations (46.2%, 178/385), KRAS mutations (9.4%, 36/385), ERBB2 mutations (6.8%, 26/385), ALK fusions (4.4%, 17/385), MET exon 14 skipping (2.3%, 9/385), BRAF mutations (2.3%, 9/385), ROS1 and RET fusions (1.8%, 7/385 each), and NTRK1 fusions (0.5%, 2/385). Notably, KRAS G12 C mutation was detected in 2.8% (11/385) of cases. Conclusions: This study demonstrates the robust performance of the OFA in identifying clinically relevant genetic alterations in NSCLC. The findings support its clinical utility in precision oncology and provide valuable insights into the genetic landscape of Asian NSCLC, enhancing personalized treatment strategies for lung cancer patients.
AB - Background: The advent of novel therapeutic agents has advanced biomarker characterization in non-small-cell lung cancer (NSCLC), driving increased adoption of next-generation sequencing (NGS) technologies for molecular testing. However, comprehensive data addressing the clinical utility of different NGS platforms for NSCLC remains limited. Methods: This retrospective study analyzed real-world data from 478 Taiwanese NSCLC patients over five years, using the Oncomine Focus Assay (OFA) to assess genetic alterations. The evaluation focused on assay accuracy, limit of detection (LoD), sequencing performance, and the genetic landscape of NSCLC. Results: The OFA achieved an NGS success rate of 80.5% (385/478), with tumor cell percentage, specimen source and FFPE block age identified as key factors affecting success. Quality metrics demonstrated robust sequencing performance, including 97.0 ± 9.6% on-target alignment, 94.7 ± 6.4% uniformity, and ≥ 500 × coverage for 98.0 ± 6.6% of amplicons. Among the 385 patients analyzed, 86.8% (334/385) were found to harbor pathogenic or likely pathogenic variants, of which 78.4% (262/334) were SNVs/Indels, 41.6% (139/334) were CNVs, 2.7% (9/334) were exon skipping alterations, and 10.2% (34/334) were gene fusions. Actionable driver mutations included EGFR mutations (46.2%, 178/385), KRAS mutations (9.4%, 36/385), ERBB2 mutations (6.8%, 26/385), ALK fusions (4.4%, 17/385), MET exon 14 skipping (2.3%, 9/385), BRAF mutations (2.3%, 9/385), ROS1 and RET fusions (1.8%, 7/385 each), and NTRK1 fusions (0.5%, 2/385). Notably, KRAS G12 C mutation was detected in 2.8% (11/385) of cases. Conclusions: This study demonstrates the robust performance of the OFA in identifying clinically relevant genetic alterations in NSCLC. The findings support its clinical utility in precision oncology and provide valuable insights into the genetic landscape of Asian NSCLC, enhancing personalized treatment strategies for lung cancer patients.
KW - Actionable driver mutations
KW - Non-small-cell lung cancer
KW - Real-world application
KW - Targeted next-generation sequencing
UR - https://www.scopus.com/pages/publications/105002982963
UR - https://www.scopus.com/inward/citedby.url?scp=105002982963&partnerID=8YFLogxK
U2 - 10.1186/s12885-025-14016-z
DO - 10.1186/s12885-025-14016-z
M3 - Article
C2 - 40247220
AN - SCOPUS:105002982963
SN - 1471-2407
VL - 25
JO - BMC Cancer
JF - BMC Cancer
IS - 1
M1 - 715
ER -