TY - JOUR
T1 - Prolonged Intrinsic Neural Timescales Dissociate from Phase Coherence in Schizophrenia
AU - Lechner, Stephan
AU - Northoff, Georg
N1 - Funding Information:
This research has received funding from the European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2). GN is grateful for funding provided by UMRF, uOBMRI, CIHR, and PSI. We are also grateful to CIHR, NSERC, and SHERRC for supporting our tri-council grant from the Canada-UK Artificial Intelligence (AI) Initiative “The self as agent-environment nexus: crossing disciplinary boundaries to help human selves and anticipate artificial selves” (ES/T01279X/1) (together with Karl J. Friston from the UK).
Publisher Copyright:
© 2023 by the authors.
PY - 2023/4
Y1 - 2023/4
N2 - Input processing in the brain is mediated by phase synchronization and intrinsic neural timescales, both of which have been implicated in schizophrenia. Their relationship remains unclear, though. Recruiting a schizophrenia EEG sample from the B-SNIP consortium dataset (n = 134, 70 schizophrenia patients, 64 controls), we investigate phase synchronization, as measured by intertrial phase coherence (ITPC), and intrinsic neural timescales, as measured by the autocorrelation window (ACW) during both the rest and oddball-task states. The main goal of our paper was to investigate whether reported shifts from shorter to longer timescales are related to decreased ITPC. Our findings show (i) decreases in both theta and alpha ITPC in response to both standard and deviant tones; and (iii) a negative correlation of ITPC and ACW in healthy subjects while such correlation is no longer present in SCZ participants. Together, we demonstrate evidence of abnormally long intrinsic neural timescales (ACW) in resting-state EEG of schizophrenia as well as their dissociation from phase synchronization (ITPC). Our data suggest that, during input processing, the resting state’s abnormally long intrinsic neural timescales tilt the balance of temporal segregation and integration towards the latter. That results in temporal imprecision with decreased phase synchronization in response to inputs. Our findings provide further evidence for a basic temporal disturbance in schizophrenia on the different timescales (longer ACW and shorter ITPC), which, in the future, might be able to explain common symptoms related to the temporal experience in schizophrenia, for example temporal fragmentation.
AB - Input processing in the brain is mediated by phase synchronization and intrinsic neural timescales, both of which have been implicated in schizophrenia. Their relationship remains unclear, though. Recruiting a schizophrenia EEG sample from the B-SNIP consortium dataset (n = 134, 70 schizophrenia patients, 64 controls), we investigate phase synchronization, as measured by intertrial phase coherence (ITPC), and intrinsic neural timescales, as measured by the autocorrelation window (ACW) during both the rest and oddball-task states. The main goal of our paper was to investigate whether reported shifts from shorter to longer timescales are related to decreased ITPC. Our findings show (i) decreases in both theta and alpha ITPC in response to both standard and deviant tones; and (iii) a negative correlation of ITPC and ACW in healthy subjects while such correlation is no longer present in SCZ participants. Together, we demonstrate evidence of abnormally long intrinsic neural timescales (ACW) in resting-state EEG of schizophrenia as well as their dissociation from phase synchronization (ITPC). Our data suggest that, during input processing, the resting state’s abnormally long intrinsic neural timescales tilt the balance of temporal segregation and integration towards the latter. That results in temporal imprecision with decreased phase synchronization in response to inputs. Our findings provide further evidence for a basic temporal disturbance in schizophrenia on the different timescales (longer ACW and shorter ITPC), which, in the future, might be able to explain common symptoms related to the temporal experience in schizophrenia, for example temporal fragmentation.
KW - EEG
KW - intertrial phase coherence
KW - intrinsic neural timescales
KW - schizophrenia
KW - temporal disturbance
UR - http://www.scopus.com/inward/record.url?scp=85156209410&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85156209410&partnerID=8YFLogxK
U2 - 10.3390/brainsci13040695
DO - 10.3390/brainsci13040695
M3 - Article
AN - SCOPUS:85156209410
SN - 2076-3425
VL - 13
JO - Brain Sciences
JF - Brain Sciences
IS - 4
M1 - 695
ER -