TY - JOUR
T1 - Predicting the survivals and favorable neurologic outcomes after targeted temperature management by artificial neural networks
AU - Chiu, Wei Ting
AU - Chung, Chen Chih
AU - Huang, Chien Hua
AU - Chien, Yu san
AU - Hsu, Chih Hsin
AU - Wu, Cheng Hsueh
AU - Wang, Chen Hsu
AU - Chiu, Hung Wen
AU - Chan, Lung
N1 - Publisher Copyright:
© 2021
PY - 2022/2
Y1 - 2022/2
N2 - Background: To identify the outcome-associated predictors and develop predictive models for patients receiving targeted temperature management (TTM) by artificial neural network (ANN). Methods: The derived cohort consisted of 580 patients with cardiac arrest and ROSC treated with TTM between January 2014 and August 2019. We evaluated the predictive value of parameters associated with survival and favorable neurologic outcome. ANN were applied for developing outcome prediction models. The generalizability of the models was assessed through 5-fold cross-validation. The performance of the models was assessed according to the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: The parameters associated with survival were age, duration of cardiopulmonary resuscitation, history of diabetes mellitus (DM), heart failure, end-stage renal disease (ESRD), systolic blood pressure (BP), diastolic BP, body temperature, motor response after ROSC, emergent coronary angiography or percutaneous coronary intervention (PCI), and the cooling methods. The parameters associated with the favorable neurologic outcomes were age, sex, DM, chronic obstructive pulmonary disease, ESRD, stroke, pre-arrest cerebral-performance category, BP, body temperature, motor response after ROSC, emergent coronary angiography or PCI, and cooling methods. After adequate training, ANN Model 1 to predict survival achieved an AUC of 0.80. Accuracy, sensitivity, and specificity were 75.9%, 71.6%, and 79.3%, respectively. ANN Model 4 to predict the favorable neurologic outcome achieved an AUC of 0.87, with accuracy, sensitivity, and specificity of 86.7%, 77.7%, and 88.0%, respectively. Conclusions: The ANN-based models achieved good performance to predict the survival and favorable neurologic outcomes after TTM. The models proposed have clinical value to assist in decision-making.
AB - Background: To identify the outcome-associated predictors and develop predictive models for patients receiving targeted temperature management (TTM) by artificial neural network (ANN). Methods: The derived cohort consisted of 580 patients with cardiac arrest and ROSC treated with TTM between January 2014 and August 2019. We evaluated the predictive value of parameters associated with survival and favorable neurologic outcome. ANN were applied for developing outcome prediction models. The generalizability of the models was assessed through 5-fold cross-validation. The performance of the models was assessed according to the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: The parameters associated with survival were age, duration of cardiopulmonary resuscitation, history of diabetes mellitus (DM), heart failure, end-stage renal disease (ESRD), systolic blood pressure (BP), diastolic BP, body temperature, motor response after ROSC, emergent coronary angiography or percutaneous coronary intervention (PCI), and the cooling methods. The parameters associated with the favorable neurologic outcomes were age, sex, DM, chronic obstructive pulmonary disease, ESRD, stroke, pre-arrest cerebral-performance category, BP, body temperature, motor response after ROSC, emergent coronary angiography or PCI, and cooling methods. After adequate training, ANN Model 1 to predict survival achieved an AUC of 0.80. Accuracy, sensitivity, and specificity were 75.9%, 71.6%, and 79.3%, respectively. ANN Model 4 to predict the favorable neurologic outcome achieved an AUC of 0.87, with accuracy, sensitivity, and specificity of 86.7%, 77.7%, and 88.0%, respectively. Conclusions: The ANN-based models achieved good performance to predict the survival and favorable neurologic outcomes after TTM. The models proposed have clinical value to assist in decision-making.
KW - Artificial neural network
KW - Cardiac arrest
KW - Outcome
KW - Prediction
KW - Targeted temperature management
UR - http://www.scopus.com/inward/record.url?scp=85111285529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111285529&partnerID=8YFLogxK
U2 - 10.1016/j.jfma.2021.07.004
DO - 10.1016/j.jfma.2021.07.004
M3 - Article
AN - SCOPUS:85111285529
SN - 0929-6646
VL - 121
SP - 490
EP - 499
JO - Journal of the Formosan Medical Association
JF - Journal of the Formosan Medical Association
IS - 2
ER -