TY - JOUR
T1 - Preclinical Repurposing of Sitagliptin as a Drug Candidate for Colorectal Cancer by Targeting CD24/CTNNB1/SOX4-Centered Signaling Hub
AU - Shih, Jing Wen
AU - Wu, Alexander T.H.
AU - Mokgautsi, Ntlotlang
AU - Wei, Po Li
AU - Huang, Yan Jiun
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - Despite significant advances in treatment modalities, colorectal cancer (CRC) remains a poorly understood and highly lethal malignancy worldwide. Cancer stem cells (CSCs) and the tumor microenvironment (TME) have been shown to play critical roles in initiating and promoting CRC progression, metastasis, and treatment resistance. Therefore, a better understanding of the underlying mechanisms contributing to the generation and maintenance of CSCs is crucial to developing CSC-specific therapeutics and improving the current standard of care for CRC patients. To this end, we used a bioinformatics approach to identify increased CD24/SOX4 expression in CRC samples associated with poor prognosis. We also discovered a novel population of tumor-infiltrating CD24+ cancer-associated fibroblasts (CAFs), suggesting that the CD24/SOX4-centered signaling hub could be a potential therapeutic target. Pathway networking analysis revealed a connection between the CD24/SOX4-centered signaling, β-catenin, and DPP4. Emerging evidence indicates that DPP4 plays a role in CRC initiation and progression, implicating its involvement in generating CSCs. Based on these bioinformatics data, we investigated whether sitagliptin, a DPP4 inhibitor and diabetic drug, could be repurposed to inhibit colon CSCs. Using a molecular docking approach, we demonstrated that sitagliptin targeted CD24/SOX4-centered signaling molecules with high affinity. In vitro experimental data showed that sitagliptin treatment suppressed CRC tumorigenic properties and worked in synergy with 5FU and this study thus provided preclinical evidence to support the alternative use of sitagliptin for treating CRC.
AB - Despite significant advances in treatment modalities, colorectal cancer (CRC) remains a poorly understood and highly lethal malignancy worldwide. Cancer stem cells (CSCs) and the tumor microenvironment (TME) have been shown to play critical roles in initiating and promoting CRC progression, metastasis, and treatment resistance. Therefore, a better understanding of the underlying mechanisms contributing to the generation and maintenance of CSCs is crucial to developing CSC-specific therapeutics and improving the current standard of care for CRC patients. To this end, we used a bioinformatics approach to identify increased CD24/SOX4 expression in CRC samples associated with poor prognosis. We also discovered a novel population of tumor-infiltrating CD24+ cancer-associated fibroblasts (CAFs), suggesting that the CD24/SOX4-centered signaling hub could be a potential therapeutic target. Pathway networking analysis revealed a connection between the CD24/SOX4-centered signaling, β-catenin, and DPP4. Emerging evidence indicates that DPP4 plays a role in CRC initiation and progression, implicating its involvement in generating CSCs. Based on these bioinformatics data, we investigated whether sitagliptin, a DPP4 inhibitor and diabetic drug, could be repurposed to inhibit colon CSCs. Using a molecular docking approach, we demonstrated that sitagliptin targeted CD24/SOX4-centered signaling molecules with high affinity. In vitro experimental data showed that sitagliptin treatment suppressed CRC tumorigenic properties and worked in synergy with 5FU and this study thus provided preclinical evidence to support the alternative use of sitagliptin for treating CRC.
KW - cancer stem cells (CSCs)
KW - cancer-associated fibroblasts (CAFs)
KW - colorectal cancer (CRC)
KW - CSC inhibitor
KW - sitagliptin
UR - http://www.scopus.com/inward/record.url?scp=85181960120&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181960120&partnerID=8YFLogxK
U2 - 10.3390/ijms25010609
DO - 10.3390/ijms25010609
M3 - Article
C2 - 38203779
AN - SCOPUS:85181960120
SN - 1661-6596
VL - 25
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 1
M1 - 609
ER -