摘要
The mechanisms underlying how arsenicmethylation capacity affects bladder cancer (BC) are still unclear. The objective of this study was to explore the effects of polymorphisms of arsenic (+3 oxidation state) methyltransferase (AS3MT) on BC risk. We conducted a hospital-based study and enrolled 216 BC and 648 healthy controls from2007 to 2011. Urinary arsenic profiles weremeasured using high-performance liquid chromatography-hydride generation-atomic absorption spectrometry. The gene polymorphisms of AS3MT were identified using the SequenomMassARRAY platform with iPLEX Gold chemistry. Inefficient arsenicmethylation capacity (highmonomethylarsonic acid percentage [MMA%] and low dimethylarsinic acid percentage [DMA%]) was associated with increased risk of BC in a dose-response relationship. AS3MT rs11191438 (C > G) G/G genotype, AS3MT rs10748835 (A > G) G/G genotype, and AS3MT rs1046778 (C > T) T/T genotype were found to be related to BC risk, where the odds ratio (OR) (95% CI) was 0.50 (0.31-0.82), 0.49 (0.30-0.79), and 0.54 (0.36-0.80), respectively. The combination of AS3MT haplotype 2 (AS3MT rs11191453, rs11191454, rs10748835, and rs1046778)'s high-risk haplotype (C-G-A-C, T-A-A-C, and T-G-G-T) was significantly associated with increased risk of BC. Among controls, only 3 of the 9 candidate genotypes evaluated, rs1119438 C/C, rs10748835 A/A and rs1046778 C/C, were associated with significantly higherMMA% compared with the other genotypes. No other genotypes or haplotypes were related to arsenicmethylation capacity. HighMMA%, low DMA% and AS3MT rs1046778 C/C + C/T genotype predicted a significantly higher risk of BC according to stepwisemultiple logistic regression analyses. AS3MT gene polymorphisms and arsenicmethylation capacity appeared to affect BC risk independently.
原文 | 英語 |
---|---|
頁(從 - 到) | 328-338 |
頁數 | 11 |
期刊 | Toxicological Sciences |
卷 | 164 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 7月 1 2018 |
ASJC Scopus subject areas
- 毒理學