PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis

Chih Yu Wang, Tsuimin Tsai, Hsin Ming Chen, Chin Tin Chen, Chun Pin Chiang

研究成果: 雜誌貢獻文章同行評審

50 引文 斯高帕斯(Scopus)

摘要

Background and Objectives: For effective management of oral neoplasia, autofluorescence spectroscopy was conducted on patients with different characteristics of oral lesions in vivo. This study tested the possibility of using a multivariate statistical algorithm to differentiate human oral premalignant and malignant lesions from benign lesions or normal oral mucosa. Study Design/Materials and Methods: A fiber optics-based fluorospectrometer was used to measure the autofluorescence spectra from healthy volunteers (NOM) and patients with oral lesions of submucous fibrosis (OSF), epithelial hyperkeratosis (EH), epithelial dysplasia (ED), and squamous cell carcinoma (SCC). A partial least-squares and artificial neural network (PLS-ANN) classification algorithm was used to characterize these oral lesions to discriminate premalignant (ED) and malignant (SCC) tissues from "benign" (NOM, OSF, and EH) tissues. Results: The normalized and centerized spectra of the different kinds of samples showed similar but divergent patterns. Our PLS-ANN classification algorithm could differentiate "premalignant and malignant" tissues from "benign" tissues with a sensitivity of 81%, a specificity of 96%, and a positive predictive value of 88%. Conclusions: We conclude that the PLS-ANN classification algorithm based on autofluorescence spectroscopy at 330-nm excitation is useful for in vivo diagnosis of OSF as well as oral premalignant and malignant lesions.

原文英語
頁(從 - 到)318-326
頁數9
期刊Lasers in Surgery and Medicine
32
發行號4
DOIs
出版狀態已發佈 - 2003

ASJC Scopus subject areas

  • 皮膚科
  • 手術

指紋

深入研究「PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis」主題。共同形成了獨特的指紋。

引用此