TY - JOUR
T1 - Okadaic acid, a bioactive fatty acid from Halichondria okadai, stimulates lipolysis in rat adipocytes
T2 - The pivotal role of perilipin translocation
AU - Chang, Nen Chung
AU - Lin, Aming Chor Ming
AU - Hsu, Cheng Chen
AU - Liu, Jung Sheng
AU - Tsui, Leo
AU - Chen, Chien Yuan
AU - Jayakumar, Thanasekaran
AU - Fong, Tsorng Harn
PY - 2013
Y1 - 2013
N2 - Lipid metabolism in visceral fat cells is correlated with metabolic syndrome and cardiovascular diseases. Okadaic-acid, a 38-carbon fatty acid isolated from the black sponge Halichondria okadai, can stimulate lipolysis by promoting the phosphorylation of several proteins in adipocytes. However, the mechanism of okadaic acid-induced lipolysis and the effects of okadaic acid on lipid-droplet-associated proteins (perilipins and beta-actin) remain unclear. We isolated adipocytes from rat epididymal fat pads and treated them with isoproterenol and/or okadaic acid to estimate lipolysis by measuring glycerol release. Incubating adipocytes with okadaic acid stimulated time-dependent lipolysis. Lipid-droplet-associated perilipins and beta-actin were analyzed by immunoblotting and immunofluorescence, and the association of perilipin A and B was found to be decreased in response to isoproterenol or okadaic acid treatment. Moreover, okadaic-acid treatment could enhance isoproterenol-mediated lipolysis, whereas treatment of several inhibitors such as KT-5720 (PKA inhibitor), calphostin C (PKC inhibitor), or KT-5823 (PKG inhibitor) did not attenuate okadaic-acid-induced lipolysis. By contrast, vanadyl acetylacetonate (tyrosine phosphatase inhibitor) blocked okadaic-acid-dependent lipolysis. These results suggest that okadaic acid induces the phosphorylation and detachment of lipid-droplet-associated perilipin A and B from the lipid droplet surface and thereby leads to accelerated lipolysis.
AB - Lipid metabolism in visceral fat cells is correlated with metabolic syndrome and cardiovascular diseases. Okadaic-acid, a 38-carbon fatty acid isolated from the black sponge Halichondria okadai, can stimulate lipolysis by promoting the phosphorylation of several proteins in adipocytes. However, the mechanism of okadaic acid-induced lipolysis and the effects of okadaic acid on lipid-droplet-associated proteins (perilipins and beta-actin) remain unclear. We isolated adipocytes from rat epididymal fat pads and treated them with isoproterenol and/or okadaic acid to estimate lipolysis by measuring glycerol release. Incubating adipocytes with okadaic acid stimulated time-dependent lipolysis. Lipid-droplet-associated perilipins and beta-actin were analyzed by immunoblotting and immunofluorescence, and the association of perilipin A and B was found to be decreased in response to isoproterenol or okadaic acid treatment. Moreover, okadaic-acid treatment could enhance isoproterenol-mediated lipolysis, whereas treatment of several inhibitors such as KT-5720 (PKA inhibitor), calphostin C (PKC inhibitor), or KT-5823 (PKG inhibitor) did not attenuate okadaic-acid-induced lipolysis. By contrast, vanadyl acetylacetonate (tyrosine phosphatase inhibitor) blocked okadaic-acid-dependent lipolysis. These results suggest that okadaic acid induces the phosphorylation and detachment of lipid-droplet-associated perilipin A and B from the lipid droplet surface and thereby leads to accelerated lipolysis.
UR - http://www.scopus.com/inward/record.url?scp=84890061775&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890061775&partnerID=8YFLogxK
U2 - 10.1155/2013/545739
DO - 10.1155/2013/545739
M3 - Article
AN - SCOPUS:84890061775
SN - 1741-427X
VL - 2013
JO - Evidence-based Complementary and Alternative Medicine
JF - Evidence-based Complementary and Alternative Medicine
M1 - 545739
ER -