TY - JOUR
T1 - Novel mechanism by which histone deacetylase inhibitors facilitate topoisomerase IIα degradation in hepatocellular carcinoma cells
AU - Chen, Mei Chuan
AU - Chen, Chun-Han
AU - Chuang, Hsiao Ching
AU - Kulp, Samuel K.
AU - Teng, Che Ming
AU - Chen, Ching Shih
PY - 2011/1
Y1 - 2011/1
N2 - Histone deacetylase (HDAC) inhibitors exhibit a unique ability to degrade topoisomerase (topo)IIα in hepatocellular carcinoma (HCC) cells, which contrasts with the effect of topoII-targeted drugs on topoIIβ degradation. This selective degradation might foster novel strategies for HCC treatment in light of the correlation of topoIIα overexpression with the aggressive tumor phenotype and chemoresistance. Here we report a novel pathway by which HDAC inhibitors mediate topoIIα proteolysis in HCC cells. Our data indicate that HDAC inhibitors transcriptionally activated casein kinase (CK)2α expression through increased association of acetylated histone H3 with the CK2α gene promoter. In turn, CK2 facilitated the binding of topoIIα to COP9 signalosome subunit (Csn)5 by way of topoIIα phosphorylation. Furthermore, we identified Fbw7, a Csn5-interacting F-box protein, as the E3 ligase that targeted topoIIα for degradation. Moreover, knockdown of CK2α, Csn5, or Fbw7 reversed HDAC inhibitor-induced topoIIα degradation. Mutational analysis indicates that the 1361SPKLSNKE1368 motif plays a crucial role in regulating topoIIα protein stability. This motif contains the consensus recognition sites for CK2 (SXXE), glycogen synthase kinase (GSK)3β (SXXXS), and Fbw7 (SPXXS). This study also reports the novel finding that topoIIα may be a target of GSK3β phosphorylation. Evidence suggests that CK2 serves as a priming kinase, through phosphorylation at Ser1365, for GSK3β-mediated phosphorylation at Ser1361. This double phosphorylation facilitated the recruitment of Fbw7 to the phospho-degron 1361pSPKLpS1365 of topoIIα, leading to its ubiquitin-dependent degradation. Conclusion: This study shows a novel pathway by which HDAC inhibitors facilitate the selective degradation of topoIIα, which underlies the complexity of the functional role of HDAC in regulating tumorigenesis and aggressive phenotype in HCC cells.
AB - Histone deacetylase (HDAC) inhibitors exhibit a unique ability to degrade topoisomerase (topo)IIα in hepatocellular carcinoma (HCC) cells, which contrasts with the effect of topoII-targeted drugs on topoIIβ degradation. This selective degradation might foster novel strategies for HCC treatment in light of the correlation of topoIIα overexpression with the aggressive tumor phenotype and chemoresistance. Here we report a novel pathway by which HDAC inhibitors mediate topoIIα proteolysis in HCC cells. Our data indicate that HDAC inhibitors transcriptionally activated casein kinase (CK)2α expression through increased association of acetylated histone H3 with the CK2α gene promoter. In turn, CK2 facilitated the binding of topoIIα to COP9 signalosome subunit (Csn)5 by way of topoIIα phosphorylation. Furthermore, we identified Fbw7, a Csn5-interacting F-box protein, as the E3 ligase that targeted topoIIα for degradation. Moreover, knockdown of CK2α, Csn5, or Fbw7 reversed HDAC inhibitor-induced topoIIα degradation. Mutational analysis indicates that the 1361SPKLSNKE1368 motif plays a crucial role in regulating topoIIα protein stability. This motif contains the consensus recognition sites for CK2 (SXXE), glycogen synthase kinase (GSK)3β (SXXXS), and Fbw7 (SPXXS). This study also reports the novel finding that topoIIα may be a target of GSK3β phosphorylation. Evidence suggests that CK2 serves as a priming kinase, through phosphorylation at Ser1365, for GSK3β-mediated phosphorylation at Ser1361. This double phosphorylation facilitated the recruitment of Fbw7 to the phospho-degron 1361pSPKLpS1365 of topoIIα, leading to its ubiquitin-dependent degradation. Conclusion: This study shows a novel pathway by which HDAC inhibitors facilitate the selective degradation of topoIIα, which underlies the complexity of the functional role of HDAC in regulating tumorigenesis and aggressive phenotype in HCC cells.
UR - http://www.scopus.com/inward/record.url?scp=78751531789&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78751531789&partnerID=8YFLogxK
U2 - 10.1002/hep.23964
DO - 10.1002/hep.23964
M3 - Article
C2 - 21254166
AN - SCOPUS:78751531789
SN - 0270-9139
VL - 53
SP - 148
EP - 159
JO - Hepatology
JF - Hepatology
IS - 1
ER -