Novel Fluorescence Sensor Based on All-Inorganic Perovskite Quantum Dots Coated with Molecularly Imprinted Polymers for Highly Selective and Sensitive Detection of Omethoate

Shuyi Huang, Manli Guo, Jiean Tan, Yuanyuan Geng, Jinyi Wu, Youwen Tang, Chaochin Su, Chun Che Lin, Yong Liang

研究成果: 雜誌貢獻文章同行評審

140 引文 斯高帕斯(Scopus)

摘要

All-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) have attracted considerable attention with superior electrical and photophysical properties. In this study, luminescent perovskite (CsPbBr3) quantum dots (QDs) as sensing elements combined with molecularly imprinted polymers (MIPs) are used for the detection of omethoate (OMT). The new MIPs@CsPbBr3 QDs were synthesized successfully through the imprinting technology with a sol-gel reaction. The fluorescence (FL) of the MIPs@CsPbBr3 QDs was quenched obviously on loading the MIPs with OMT, the linear range of OMT was from 50 to 400 ng/mL, and the detection limit was 18.8 ng/mL. The imprinting factor was 3.2, which indicated excellent specificity of the MIPs for the inorganic metal halide (IMH) perovskites. The novel composite possesses the outstanding FL capability of CsPbBr3 QDs and the high selectivity of molecular imprinting technology, which can convert the specific interactions between template and the imprinted cavities to apparent changes in the FL intensity. Hence, a selective and simple FL sensor for direct and fast detection of organophosphorus pesticide in vegetable and soil samples was developed here. The present work also illustrates the potential of IMH perovskites for sensor applications in biological and environmental detection.
原文英語
頁(從 - 到)39056-39063
頁數8
期刊ACS Applied Materials and Interfaces
10
發行號45
DOIs
出版狀態已發佈 - 11月 14 2018

ASJC Scopus subject areas

  • 一般材料科學

指紋

深入研究「Novel Fluorescence Sensor Based on All-Inorganic Perovskite Quantum Dots Coated with Molecularly Imprinted Polymers for Highly Selective and Sensitive Detection of Omethoate」主題。共同形成了獨特的指紋。

引用此