TY - JOUR
T1 - Non-ablative fractional laser assists cutaneous delivery of small- and macro-molecules with minimal bacterial infection risk
AU - Lee, Woan Ruoh
AU - Shen, Shing Chuan
AU - Aljuffali, Ibrahim A.
AU - Lin, Yin Ku
AU - Huang, Chang Wei
AU - Fang, Jia You
PY - 2016/9/20
Y1 - 2016/9/20
N2 - Use of the ablative laser has been approved to enhance topical drug penetration. Investigation into the usefulness of the non-ablative laser for assisting drug delivery is very limited. In this study, we explored the safety and efficacy of the non-ablative fractional erbium:glass (Er:glass) laser as an enhancement approach to promote drug permeation. Both pig and nude mouse skins were employed as transport barriers. We histologically examined the skin structure after laser exposure. The permeants of 5-aminolevulinic acid (ALA), imiquimod, tretinoin, peptide, dextrans and quantum dots (QD) were used to evaluate in vitro and in vivo skin passage. The fractional laser selectively created an array of photothermal dots deep into the dermis with the preservation of the stratum corneum and epidermis. The barrier function of the skin could be recovered 8–60 h post-irradiation depending on the laser spot densities. The application of the laser caused no local infection of Staphylococcus aureus and Pseudomonas aeruginosa. Compared to intact skin, ALA flux was enhanced up to 1200-fold after laser exposure. The penetration enhancement level by the laser was decreased following the increase of permeant lipophilicity. The skin accumulation of tretinoin, an extremely lipophilic drug, showed only a 2-fold elevation by laser irradiation. The laser promoted peptide penetration 10-fold compared to the control skin. Skin delivery of dextrans with a molecular weight (MW) of at least 40 kDa could be achieved with the Er:glass laser. QD with a diameter of 20 nm penetrated into the skin with the assistance of the non-ablative laser. The confocal microscopic images indicated the perpendicular and lateral diffusions of dextrans and nanoparticles via laser-created microscopic thermal zones. Controlled Er:glass laser irradiation offers a valid enhancement strategy to topically administer the permeants with a wide MW and lipophilicity range.
AB - Use of the ablative laser has been approved to enhance topical drug penetration. Investigation into the usefulness of the non-ablative laser for assisting drug delivery is very limited. In this study, we explored the safety and efficacy of the non-ablative fractional erbium:glass (Er:glass) laser as an enhancement approach to promote drug permeation. Both pig and nude mouse skins were employed as transport barriers. We histologically examined the skin structure after laser exposure. The permeants of 5-aminolevulinic acid (ALA), imiquimod, tretinoin, peptide, dextrans and quantum dots (QD) were used to evaluate in vitro and in vivo skin passage. The fractional laser selectively created an array of photothermal dots deep into the dermis with the preservation of the stratum corneum and epidermis. The barrier function of the skin could be recovered 8–60 h post-irradiation depending on the laser spot densities. The application of the laser caused no local infection of Staphylococcus aureus and Pseudomonas aeruginosa. Compared to intact skin, ALA flux was enhanced up to 1200-fold after laser exposure. The penetration enhancement level by the laser was decreased following the increase of permeant lipophilicity. The skin accumulation of tretinoin, an extremely lipophilic drug, showed only a 2-fold elevation by laser irradiation. The laser promoted peptide penetration 10-fold compared to the control skin. Skin delivery of dextrans with a molecular weight (MW) of at least 40 kDa could be achieved with the Er:glass laser. QD with a diameter of 20 nm penetrated into the skin with the assistance of the non-ablative laser. The confocal microscopic images indicated the perpendicular and lateral diffusions of dextrans and nanoparticles via laser-created microscopic thermal zones. Controlled Er:glass laser irradiation offers a valid enhancement strategy to topically administer the permeants with a wide MW and lipophilicity range.
KW - Cutaneous delivery
KW - Macromolecule
KW - Nanoparticle
KW - Non-ablative fractional laser
KW - Small-molecule drug
UR - http://www.scopus.com/inward/record.url?scp=84976501929&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84976501929&partnerID=8YFLogxK
U2 - 10.1016/j.ejps.2016.06.016
DO - 10.1016/j.ejps.2016.06.016
M3 - Article
C2 - 27345564
AN - SCOPUS:84976501929
SN - 0928-0987
VL - 92
SP - 1
EP - 10
JO - European Journal of Pharmaceutical Sciences
JF - European Journal of Pharmaceutical Sciences
ER -