New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment

Shang Hung Chen, Jang Yang Chang

研究成果: 雜誌貢獻回顧型文獻同行評審

321 引文 斯高帕斯(Scopus)

摘要

Although cisplatin has been a pivotal chemotherapy drug in treating patients with various types of cancer for decades, drug resistance has been a major clinical impediment. In general, cisplatin exerts cytotoxic effects in tumor cells mainly through the generation of DNA-platinum adducts and subsequent DNA damage response. Accordingly, considerable effort has been devoted to clarify the resistance mechanisms inside tumor cells, such as decreased drug accumulation, enhanced detoxification activity, promotion of DNA repair capacity, and inactivated cell death signaling. However, recent advances in high-throughput techniques, cell culture platforms, animal models, and analytic methods have also demonstrated that the tumor microenvironment plays a key role in the development of cisplatin resistance. Recent clinical successes in combination treatments with cisplatin and novel agents targeting components in the tumor microenvironment, such as angiogenesis and immune cells, have also supported the therapeutic value of these components in cisplatin resistance. In this review, we summarize resistance mechanisms with respect to a single tumor cell and crucial components in the tumor microenvironment, particularly focusing on favorable results from clinical studies. By compiling emerging evidence from preclinical and clinical studies, this review may provide insights into the development of a novel approach to overcome cisplatin resistance.
原文英語
文章編號4136
期刊International journal of molecular sciences
20
發行號17
DOIs
出版狀態已發佈 - 9月 1 2019
對外發佈

ASJC Scopus subject areas

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment」主題。共同形成了獨特的指紋。

引用此