摘要
In this paper, we propose a novel approach for reader-emotion categorization using word embedding learned from neural networks and an SVM classifier. The primary objective of such word embedding methods involves learning continuous distributed vector representations of words through neural networks. It can capture semantic context and syntactic cues, and subsequently be used to infer similarity measures among words, sentences, and even documents. Various methods of combining the word embeddings are tested for their performances on reader-emotion categorization of a Chinese news corpus. Results demonstrate that the proposed method, when compared to several other approaches, can achieve comparable or even better performances.
原文 | 英語 |
---|---|
主出版物標題 | Proceedings - 2015 IEEE 16th International Conference on Information Reuse and Integration, IRI 2015 |
發行者 | Institute of Electrical and Electronics Engineers Inc. |
頁面 | 569-573 |
頁數 | 5 |
ISBN(電子) | 9781467366564 |
DOIs | |
出版狀態 | 已發佈 - 10月 19 2015 |
對外發佈 | 是 |
事件 | 16th IEEE International Conference on Information Reuse and Integration, IRI 2015 - San Francisco, 美国 持續時間: 8月 13 2015 → 8月 15 2015 |
會議
會議 | 16th IEEE International Conference on Information Reuse and Integration, IRI 2015 |
---|---|
國家/地區 | 美国 |
城市 | San Francisco |
期間 | 8/13/15 → 8/15/15 |
ASJC Scopus subject areas
- 資訊系統
- 資訊系統與管理
- 電氣與電子工程