摘要
The management of diabetic kidney disease (DKD) faces challenges stemming from intricate pathologies and suboptimal biodistributions during drug delivery. Although clinically available anti-inflammatory agents hold considerable promise for treating DKD, their therapeutic effectiveness is limited when utilized in isolation. To address this limitation, we introduced a novel self-oriented nanocarrier termed F-GCS@Hb-DIF, designed to synergistically integrate the therapeutic diferuloylmethane (DIF), the polysaccharide fucoidan/glycol chitosan (F-GCS), and phototherapeutic hemoglobin (Hb). F-GCS@Hb-DIF demonstrated the capability to autonomously navigate toward diseased renal sites and directly release drugs into the cytoplasm of target cells following intranasal administration. This self-directed drug delivery system increased the accumulation of Hb and DIF at the target site as per biodistribution data. This enhancement allowed F-GCS@Hb-DIF to adopt a synergistic approach in treating the complex pathologies of DKD during the two-week treatment period. This approach entails modulating immunity, promoting renal functional recovery with a tissue-protective effect, and alleviating renal inflammation. These results underscore the promising therapeutic potential of F-GCS@Hb-DIF in managing DKD and other degenerative diseases associated with diabetes.
原文 | 英語 |
---|---|
文章編號 | 136534 |
期刊 | International Journal of Biological Macromolecules |
卷 | 282 |
DOIs | |
出版狀態 | 已發佈 - 12月 2024 |
ASJC Scopus subject areas
- 結構生物學
- 生物化學
- 分子生物學