摘要
Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes.
原文 | 英語 |
---|---|
頁(從 - 到) | 4516-4529 |
頁數 | 14 |
期刊 | Molecules |
卷 | 20 |
發行號 | 3 |
DOIs | |
出版狀態 | 已發佈 - 3月 1 2015 |
ASJC Scopus subject areas
- 藥物發現
- 分析化學
- 化學(雜項)
- 分子醫學
- 物理與理論化學
- 藥學科學
- 有機化學