Multi-Class Deep Learning Model for Detecting Pediatric Distal Forearm Fractures Based on the AO/OTA Classification

Le Nguyen Binh, Nguyen Thanh Nhu, Vu Pham Thao Vy, Do Le Hoang Son, Truong Nguyen Khanh Hung, Nguyen Bach, Hoang Quoc Huy, Le Van Tuan, Nguyen Quoc Khanh Le, Jiunn-Horng Kang

研究成果: 雜誌貢獻文章同行評審

摘要

Common pediatric distal forearm fractures necessitate precise detection. To support prompt treatment planning by clinicians, our study aimed to create a multi-class convolutional neural network (CNN) model for pediatric distal forearm fractures, guided by the AO Foundation/Orthopaedic Trauma Association (AO/ATO) classification system for pediatric fractures. The GRAZPEDWRI-DX dataset (2008-2018) of wrist X-ray images was used. We labeled images into four fracture classes (FRM, FUM, FRE, and FUE with F, fracture; R, radius; U, ulna; M, metaphysis; and E, epiphysis) based on the pediatric AO/ATO classification. We performed multi-class classification by training a YOLOv4-based CNN object detection model with 7006 images from 1809 patients (80% for training and 20% for validation). An 88-image test set from 34 patients was used to evaluate the model performance, which was then compared to the diagnosis performances of two readers-an orthopedist and a radiologist. The overall mean average precision levels on the validation set in four classes of the model were 0.97, 0.92, 0.95, and 0.94, respectively. On the test set, the model's performance included sensitivities of 0.86, 0.71, 0.88, and 0.89; specificities of 0.88, 0.94, 0.97, and 0.98; and area under the curve (AUC) values of 0.87, 0.83, 0.93, and 0.94, respectively. The best performance among the three readers belonged to the radiologist, with a mean AUC of 0.922, followed by our model (0.892) and the orthopedist (0.830). Therefore, using the AO/OTA concept, our multi-class fracture detection model excelled in identifying pediatric distal forearm fractures.
原文英語
頁(從 - 到)725-733
頁數9
期刊Journal of imaging informatics in medicine
37
發行號2
DOIs
出版狀態已發佈 - 4月 2024

指紋

深入研究「Multi-Class Deep Learning Model for Detecting Pediatric Distal Forearm Fractures Based on the AO/OTA Classification」主題。共同形成了獨特的指紋。

引用此