TY - JOUR
T1 - Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo
AU - Chou, Cheng Chung
AU - Chen, Wei
AU - Hung, Yann
AU - Mou, Chung Yuan
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/7/12
Y1 - 2017/7/12
N2 - Biomedical applications of mesoporous silica nanoparticles (MSNs) require efficient cellular uptake and low toxicity. The purpose of this study is to investigate the cellular uptake and toxicity of MSNs with different sizes and charges (50, 100, and 250 nm with a positive surface charge and 100 nm with a negative surface charge) exposed to human monocyte-derived macrophages, lung epithelium BEAS-2B cells, and mice using genome-wide gene expression analysis and cellular/animal-level end point tests. We found that MSNs can be taken up into cells through endocytosis in a charge- and size-dependent manner, with positively charged and larger MSNs being more easily taken up into the cells by recruiting more types of endocytotic pathways for more cellular uptake. Moreover, the cytotoxicity of MSNs could be correlated with the amount of MSNs taken up by cells, which positively correlates to the particle size and dosage. Therefore, only positively charged and larger MSNs (≥100 nm) during higher treatment doses (≥500 μg mL-1) resulted in a sufficient accumulation of internalized MSNs in cells to induce significant release of reactive oxygen species (ROS) and oxidative stress, inflammatory gene upregulation through NF-B and AP-1, and eventually autophagy-mediated necrotic cell death. Furthermore, genome-wide gene expression analysis could reflect the above in vitro cellular damages and corresponding in vivo injuries in mice, indicating that specific gene expression footprints may be used for assessing the safety of nanoparticles. The present finding provides some insights into the rational design of effective MSN-based drug/gene delivery systems and biomedical applications.
AB - Biomedical applications of mesoporous silica nanoparticles (MSNs) require efficient cellular uptake and low toxicity. The purpose of this study is to investigate the cellular uptake and toxicity of MSNs with different sizes and charges (50, 100, and 250 nm with a positive surface charge and 100 nm with a negative surface charge) exposed to human monocyte-derived macrophages, lung epithelium BEAS-2B cells, and mice using genome-wide gene expression analysis and cellular/animal-level end point tests. We found that MSNs can be taken up into cells through endocytosis in a charge- and size-dependent manner, with positively charged and larger MSNs being more easily taken up into the cells by recruiting more types of endocytotic pathways for more cellular uptake. Moreover, the cytotoxicity of MSNs could be correlated with the amount of MSNs taken up by cells, which positively correlates to the particle size and dosage. Therefore, only positively charged and larger MSNs (≥100 nm) during higher treatment doses (≥500 μg mL-1) resulted in a sufficient accumulation of internalized MSNs in cells to induce significant release of reactive oxygen species (ROS) and oxidative stress, inflammatory gene upregulation through NF-B and AP-1, and eventually autophagy-mediated necrotic cell death. Furthermore, genome-wide gene expression analysis could reflect the above in vitro cellular damages and corresponding in vivo injuries in mice, indicating that specific gene expression footprints may be used for assessing the safety of nanoparticles. The present finding provides some insights into the rational design of effective MSN-based drug/gene delivery systems and biomedical applications.
KW - autophagy
KW - endocytosis
KW - gene expression microarray
KW - inflammation
KW - mesoporous silica nanoparticles
KW - oxidative stress
KW - reactive oxygen species (ROS)
KW - toxicity
UR - http://www.scopus.com/inward/record.url?scp=85024097319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85024097319&partnerID=8YFLogxK
U2 - 10.1021/acsami.7b05359
DO - 10.1021/acsami.7b05359
M3 - Article
C2 - 28608695
AN - SCOPUS:85024097319
SN - 1944-8244
VL - 9
SP - 22235
EP - 22251
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 27
ER -