Modulation of adipose inflammation by cellular retinoic acid-binding protein 1

Chin Wen Wei, Jennifer Nhieu, Yu Lung Lin, Li Na Wei

研究成果: 雜誌貢獻文章同行評審

2 引文 斯高帕斯(Scopus)

摘要

Objectives: Obesity, a metabolic syndrome, is known to be related to inflammation, especially adipose tissue inflammation. Cellular interactions within the expanded white adipose tissue (WAT) in obesity contribute to inflammation and studies have suggested that inflammation is triggered by inflamed adipocytes that recruit M1 macrophages into WAT. What causes accumulation of unhealthy adipocytes is an important topic of investigation. This study aims to understand the action of Cellular Retinoic Acid Binding Protein 1 (CRABP1) in WAT inflammation. Methods: Eight weeks-old wild type (WT) and Crabp1 knockout (CKO) mice were fed with a normal diet (ND) or high-fat diet (HFD) for 8 weeks. Body weight and food intake were monitored. WATs and serum were collected for cellular and molecular analyses to determine affected signaling pathways. In cell culture studies, primary adipocyte differentiation and bone marrow-derived macrophages (BMDM) were used to examine adipocytes’ effects, mediated by CRABP1, in macrophage polarization. The 3T3L1-adipocyte was used to validate relevant signaling pathways. Results: CKO mice developed an obese phenotype, more severely under high-fat diet (HFD) feeding. Further, CKO’s WAT exhibited a more severe inflammatory state as compared to wild type (WT) WAT, with a significantly expanded M1-like macrophage population. However, this was not caused by intrinsic defects of CKO macrophages. Rather, CKO adipocytes produced a significantly reduced level of adiponectin and had significantly lowered mitochondrial DNA content. CKO adipocyte-conditioned medium, compared to WT control, inhibited M2-like (CD206+) macrophage polarization. Mechanistically, defects in CKO adipocytes involved the ERK1/2 signaling pathway that could be modulated by CRABP1. Conclusions: This study shows that CRABP1 plays a protective role against HFD-induced WAT inflammation through, in part, its regulation of adiponectin production and mitochondrial homeostasis in adipocytes, thereby modulating macrophage polarization in WAT to control its inflammatory potential.
原文英語
頁(從 - 到)1759-1769
頁數11
期刊International Journal of Obesity
46
發行號10
DOIs
出版狀態已發佈 - 10月 2022
對外發佈

ASJC Scopus subject areas

  • 內分泌學、糖尿病和代謝
  • 醫藥(雜項)
  • 營養與營養學

指紋

深入研究「Modulation of adipose inflammation by cellular retinoic acid-binding protein 1」主題。共同形成了獨特的指紋。

引用此