摘要
原文 | 英語 |
---|---|
頁(從 - 到) | 69-82 |
頁數 | 14 |
期刊 | Toxicology and Applied Pharmacology |
卷 | 237 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 2009 |
對外發佈 | 是 |
指紋
深入研究「Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases」主題。共同形成了獨特的指紋。引用此
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
於: Toxicology and Applied Pharmacology, 卷 237, 編號 1, 2009, p. 69-82.
研究成果: 雜誌貢獻 › 文章 › 同行評審
}
TY - JOUR
T1 - Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases
AU - Huang, Tien-Yu
AU - Chu, Heng-Cheng
AU - Lin, Yi-Ling
AU - Lin, Chih-Kung
AU - Hsieh, Tsai-Yuan
AU - Chang, Wei-Kuo
AU - Chao, You-Chen
AU - Liao, Ching-Len
N1 - 被引用次數:29 Export Date: 22 March 2016 CODEN: TXAPA 通訊地址: Chao, Y.-C.; Division of Gastroenterology, Taipei Tzu Chi General Hospital, Taipei, Taiwan 化學物質/CAS: collagenase 3, 175449-82-8; dextran sulfate, 9011-18-1, 9042-14-2; gelatinase A, 146480-35-5; gelatinase B, 146480-36-6; inducible nitric oxide synthase, 501433-35-8; minocycline, 10118-90-8, 11006-27-2, 13614-98-7; nitric oxide, 10102-43-9; stromelysin, 79955-99-0; trinitrobenzenesulfonic acid, 16655-63-3, 2508-19-2; Anti-Bacterial Agents; Anti-Inflammatory Agents; Cytokines; Dextran Sulfate, 9042-14-2; Enzyme Inhibitors; Matrix Metalloproteinases, 3.4.24.-; Metronidazole, 443-48-1; Minocycline, 10118-90-8; Nitric Oxide Synthase Type II, 1.14.13.39; RNA, Messenger; Trinitrobenzenesulfonic Acid, 2508-19-2 製造商: Sigma Aldrich 參考文獻: Amin, A.R., Attur, M.G., Thakker, G.D., Patel, P.D., Vyas, P.R., Patel, R.N., Patel, I.R., Abramson, S.B., A novel mechanism of action of tetracyclines: effects on nitric oxide synthases (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 14014-14019; Amin, A.R., Patel, R.N., Thakker, G.D., Lowenstein, C.J., Attur, M.G., Abramson, S.B., Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines (1997) FEBS Lett., 410, pp. 259-264; Archer, S., Measurement of nitric oxide in biological models (1993) Faseb. J., 7, pp. 349-360; Barrie, A., Regueiro, M., Biologic therapy in the management of extraintestinal manifestations of inflammatory bowel disease (2007) Inflamm. Bowel Dis., 13, pp. 1424-1429; Baugh, M.D., Perry, M.J., Hollander, A.P., Davies, D.R., Cross, S.S., Lobo, A.J., Taylor, C.J., Evans, G.S., Matrix metalloproteinase levels are elevated in inflammatory bowel disease (1999) Gastroenterology, 117, pp. 814-822; Beck, P.L., Xavier, R., Wong, J., Ezedi, I., Mashimo, H., Mizoguchi, A., Mizoguchi, E., Podolsky, D.K., Paradoxical roles of different nitric oxide synthase isoforms in colonic injury (2004) Am. J. Physiol. Gastrointest. Liver Physiol., 286, pp. G137-147; Boughton-Smith, N.K., Pathological and therapeutic implications for nitric oxide in inflammatory bowel disease (1994) J. R. Soc. Med., 87, pp. 312-314; Bouma, G., Strober, W., The immunological and genetic basis of inflammatory bowel disease (2003) Nat. Rev. Immunol., 3, pp. 521-533; Bradley, P.P., Priebat, D.A., Christensen, R.D., Rothstein, G., Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker (1982) J. Invest. Dermatol., 78, pp. 206-209; Castaneda, F.E., Walia, B., Vijay-Kumar, M., Patel, N.R., Roser, S., Kolachala, V.L., Rojas, M., Sitaraman, S.V., Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP (2005) Gastroenterology, 129, pp. 1991-2008; Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Friedlander, R.M., Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease (2000) Nat. Med., 6, pp. 797-801; Chu, H.C., Lin, Y.L., Sytwu, H.K., Lin, S.H., Liao, C.L., Chao, Y.C., Effects of minocycline on Fas-mediated fulminant hepatitis in mice (2005) Br. J. Pharmacol., 144, pp. 275-282; Cooper, H.S., Murthy, S.N., Shah, R.S., Sedergran, D.J., Clinicopathologic study of dextran sulfate sodium experimental murine colitis (1993) Lab. Invest., 69, pp. 238-249; Corry, D.B., Rishi, K., Kanellis, J., Kiss, A., Song Lz, L.Z., Xu, J., Feng, L., Kheradmand, F., Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency (2002) Nat. Immunol., 3, pp. 347-353; Cross, R.K., Wilson, K.T., Nitric oxide in inflammatory bowel disease (2003) Inflamm. Bowel Dis., 9, pp. 179-189; Danese, S., Sans, M., de la Motte, C., Graziani, C., West, G., Phillips, M.H., Pola, R., Fiocchi, C., Angiogenesis as a novel component of inflammatory bowel disease pathogenesis (2006) Gastroenterology, 130, pp. 2060-2073; Dieleman, L.A., Ridwan, B.U., Tennyson, G.S., Beagley, K.W., Bucy, R.P., Elson, C.O., Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice (1994) Gastroenterology, 107, pp. 1643-1652; Du, Y., Ma, Z., Lin, S., Dodel, R.C., Gao, F., Bales, K.R., Triarhou, L.C., Paul, S.M., Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 14669-14674; Dubois, B., Starckx, S., Pagenstecher, A., Oord, J., Arnold, B., Opdenakker, G., Gelatinase B deficiency protects against endotoxin shock (2002) Eur. J. Immunol., 32, pp. 2163-2171; Elson, C.O., Sartor, R.B., Tennyson, G.S., Riddell, R.H., Experimental models of inflammatory bowel disease (1995) Gastroenterology, 109, pp. 1344-1367; Elson, C.O., Beagley, K.W., Sharmanov, A.T., Fujihashi, K., Kiyono, H., Tennyson, G.S., Cong, Y., McGhee, J.R., Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance (1996) J. Immunol., 157, pp. 2174-2185; Gionchetti, P., Rizzello, F., Lammers, K.M., Morselli, C., Tambasco, R., Campieri, M., Antimicrobials in the management of inflammatory bowel disease (2006) Digestion, 73 (SUPPL. 1), pp. 77-85; Hautamaki, R.D., Kobayashi, D.K., Senior, R.M., Shapiro, S.D., Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice (1997) Science, 277, pp. 2002-2004; Hokari, R., Kato, S., Matsuzaki, K., Kuroki, M., Iwai, A., Kawaguchi, A., Nagao, S., Miura, S., Reduced sensitivity of inducible nitric oxide synthase-deficient mice to chronic colitis (2001) Free Radic. Biol. Med., 31, pp. 153-163; Hu, J., Van den Steen, P.E., Sang, Q.X., Opdenakker, G., Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases (2007) Nat. Rev. Drug Discov., 6, pp. 480-498; Kankuri, E., Vaali, K., Knowles, R.G., Lahde, M., Korpela, R., Vapaatalo, H., Moilanen, E., Suppression of acute experimental colitis by a highly selective inducible nitric-oxide synthase inhibitor, N-[3-(aminomethyl)benzyl]acetamidine (2001) J. Pharmacol. Exp. Ther., 298, pp. 1128-1132; Keane, J., Gershon, S., Wise, R.P., Mirabile-Levens, E., Kasznica, J., Schwieterman, W.D., Siegel, J.N., Braun, M.M., Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent (2001) N. Engl. J. Med., 345, pp. 1098-1104; Kielian, T., Esen, N., Liu, S., Phulwani, N.K., Syed, M.M., Phillips, N., Nishina, K., Ruhe, J.J., Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus-induced brain abscess (2007) Am. J. Pathol., 171, pp. 1199-1214; Kirkegaard, T., Hansen, A., Bruun, E., Brynskov, J., Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn's disease (2004) Gut, 53, pp. 701-709; Kloppenburg, M., Verweij, C.L., Miltenburg, A.M., Verhoeven, A.J., Daha, M.R., Dijkmans, B.A., Breedveld, F.C., The influence of tetracyclines on T cell activation (1995) Clin. Exp. Immunol., 102, pp. 635-641; Koistinaho, M., Malm, T.M., Kettunen, M.I., Goldsteins, G., Starckx, S., Kauppinen, R.A., Opdenakker, G., Koistinaho, J., Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice (2005) J. Cereb. Blood Flow Metab., 25, pp. 460-467; Korzenik, J.R., Podolsky, D.K., Evolving knowledge and therapy of inflammatory bowel disease (2006) Nat. Rev. Drug Discov., 5, pp. 197-209; Krieglstein, C.F., Cerwinka, W.H., Laroux, F.S., Salter, J.W., Russell, J.M., Schuermann, G., Grisham, M.B., Granger, D.N., Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide (2001) J. Exp. Med., 194, pp. 1207-1218; Lee, C.Z., Yao, J.S., Huang, Y., Zhai, W., Liu, W., Guglielmo, B.J., Lin, E., Young, W.L., Dose-response effect of tetracyclines on cerebral matrix metalloproteinase-9 after vascular endothelial growth factor hyperstimulation (2006) J. Cereb. Blood Flow Metab., 26, pp. 1157-1164; Macdonald, T.T., Monteleone, G., Immunity, inflammation, and allergy in the gut (2005) Science, 307, pp. 1920-1925; Machado, L.S., Kozak, A., Ergul, A., Hess, D.C., Borlongan, C.V., Fagan, S.C., Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke (2006) BMC Neurosci., 7, p. 56; Mahler, M., Bristol, I.J., Leiter, E.H., Workman, A.E., Birkenmeier, E.H., Elson, C.O., Sundberg, J.P., Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis (1998) Am. J. Physiol., 274, pp. G544-551; Martinez, J.A., Williams, C.S., Amann, J.M., Ellis, T.C., Moreno-Miralles, I., Washington, M.K., Gregoli, P., Hiebert, S.W., Deletion of Mtgr1 sensitizes the colonic epithelium to dextran sodium sulfate-induced colitis (2006) Gastroenterology, 131, pp. 579-588; Medina, C., Radomski, M.W., Role of matrix metalloproteinases in intestinal inflammation (2006) J. Pharmacol. Exp. Ther., 318, pp. 933-938; Medina, C., Videla, S., Radomski, A., Radomski, M.W., Antolin, M., Guarner, F., Vilaseca, J., Malagelada, J.R., Increased activity and expression of matrix metalloproteinase-9 in a rat model of distal colitis (2003) Am. J. Physiol. Gastrointest. Liver Physiol., 284, pp. G116-122; Medina, C., Santana, A., Paz, M.C., Diaz-Gonzalez, F., Farre, E., Salas, A., Radomski, M.W., Quintero, E., Matrix metalloproteinase-9 modulates intestinal injury in rats with transmural colitis (2006) J. Leukoc. Biol., 79, pp. 954-962; Meijer, M.J., Mieremet-Ooms, M.A., van der Zon, A.M., van Duijn, W., van Hogezand, R.A., Sier, C.F., Hommes, D.W., Verspaget, H.W., Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype (2007) Dig. Liver Dis., 39, pp. 733-739; Menchen, L.A., Colon, A.L., Moro, M.A., Leza, J.C., Lizasoain, I., Menchen, P., Alvarez, E., Lorenzo, P., N-(3-(aminomethyl)benzyl)acetamidine, an inducible nitric oxide synthase inhibitor, decreases colonic inflammation induced by trinitrobenzene sulphonic acid in rats (2001) Life Sci., 69, pp. 479-491; Morris, G.P., Beck, P.L., Herridge, M.S., Depew, W.T., Szewczuk, M.R., Wallace, J.L., Hapten-induced model of chronic inflammation and ulceration in the rat colon (1989) Gastroenterology, 96, pp. 795-803; Muller-Pillasch, F., Gress, T.M., Yamaguchi, H., Geng, M., Adler, G., Menke, A., The influence of transforming growth factor beta 1 on the expression of genes coding for matrix metalloproteinases and tissue inhibitors of metalloproteinases during regeneration from cerulein-induced pancreatitis (1997) Pancreas, 15, pp. 168-175; Munkholm, P., Langholz, E., Davidsen, M., Binder, V., Frequency of glucocorticoid resistance and dependency in Crohn's disease (1994) Gut, 35, pp. 360-362; Naito, Y., Yoshikawa, T., Role of matrix metalloproteinases in inflammatory bowel disease (2005) Mol. Aspects Med., 26, pp. 379-390; Naito, Y., Takagi, T., Kuroda, M., Katada, K., Ichikawa, H., Kokura, S., Yoshida, N., Yoshikawa, T., An orally active matrix metalloproteinase inhibitor, ONO-4817, reduces dextran sulfate sodium-induced colitis in mice (2004) Inflamm. Res., 53, pp. 462-468; Obermeier, F., Kojouharoff, G., Hans, W., Scholmerich, J., Gross, V., Falk, W., Interferon-gamma (IFN-gamma)- and tumour necrosis factor (TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate sodium (DSS)-induced colitis in mice (1999) Clin. Exp. Immunol., 116, pp. 238-245; Ohkawara, T., Nishihira, J., Takeda, H., Hige, S., Kato, M., Sugiyama, T., Iwanaga, T., Asaka, M., Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice (2002) Gastroenterology, 123, pp. 256-270; Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., Nakaya, R., A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice (1990) Gastroenterology, 98, pp. 694-702; Onderdonk, A.B., Hermos, J.A., Dzink, J.L., Bartlett, J.G., Protective effect of metronidazole in experimental ulcerative colitis (1978) Gastroenterology, 74, pp. 521-526; Opdenakker, G., Nelissen, I., Van Damme, J., Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis (2003) Lancet Neurol., 2, pp. 747-756; Rath, H.C., Schultz, M., Freitag, R., Dieleman, L.A., Li, F., Linde, H.J., Scholmerich, J., Sartor, R.B., Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice (2001) Infect. Immun., 69, pp. 2277-2285; Rifkin, B.R., Vernillo, A.T., Golub, L.M., Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: a potential therapeutic role for tetracyclines and their chemically-modified analogs (1993) J. Periodontol., 64, pp. 819-827; Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A.C., Horak, I., Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene (1993) Cell, 75, pp. 253-261; Sapadin, A.N., Fleischmajer, R., Tetracyclines: nonantibiotic properties and their clinical implications (2006) J. Am. Acad. Dermatol., 54, pp. 258-265; Sartor, R.B., Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics (2004) Gastroenterology, 126, pp. 1620-1633; Sellon, R.K., Tonkonogy, S., Schultz, M., Dieleman, L.A., Grenther, W., Balish, E., Rennick, D.M., Sartor, R.B., Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice (1998) Infect. Immun., 66, pp. 5224-5231; Shenefelt, P.D., Pyoderma gangrenosum associated with cystic acne and hidradenitis suppurativa controlled by adding minocycline and sulfasalazine to the treatment regimen (1996) Cutis, 57, pp. 315-319; Sorsa, T., Tjaderhane, L., Konttinen, Y.T., Lauhio, A., Salo, T., Lee, H.M., Golub, L.M., Mantyla, P., Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation (2006) Ann. Med., 38, pp. 306-321; Sriram, K., Miller, D.B., O'Callaghan, J.P., Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha (2006) J. Neurochem., 96, pp. 706-718; Stone, M., Fortin, P.R., Pacheco-Tena, C., Inman, R.D., Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity (2003) J. Rheumatol., 30, pp. 2112-2122; Sutton, T.A., Kelly, K.J., Mang, H.E., Plotkin, Z., Sandoval, R.M., Dagher, P.C., Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury (2005) Am. J. Physiol. Renal. Physiol., 288, pp. F91-97; Tamaki, H., Nakamura, H., Nishio, A., Nakase, H., Ueno, S., Uza, N., Kido, M., Chiba, T., Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production (2006) Gastroenterology, 131, pp. 1110-1121; Tamargo, R.J., Bok, R.A., Brem, H., Angiogenesis inhibition by minocycline (1991) Cancer Res., 51, pp. 672-675; Tessner, T.G., Cohn, S.M., Schloemann, S., Stenson, W.F., Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice (1998) Gastroenterology, 115, pp. 874-882; Thomas, M., Ashizawa, T., Jankovic, J., Minocycline in Huntington's disease: a pilot study (2004) Mov. Disord., 19, pp. 692-695; Truelove, S.C., Witts, L.J., Cortisone in ulcerative colitis; final report on a therapeutic trial (1955) Br. Med. J., 2, pp. 1041-1048; Van den Steen, P.E., Proost, P., Grillet, B., Brand, D.D., Kang, A.H., Van Damme, J., Opdenakker, G., Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis (2002) Faseb J., 16, pp. 379-389; Van Lint, P., Wielockx, B., Puimege, L., Noel, A., Lopez-Otin, C., Libert, C., Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis (2005) J. Immunol., 175, pp. 7642-7649; Vizoso, F.J., Gonzalez, L.O., Corte, M.D., Corte, M.G., Bongera, M., Martinez, A., Martin, A., Gava, R.R., Collagenase-3 (MMP-13) expression by inflamed mucosa in inflammatory bowel disease (2006) Scand. J. Gastroenterol., 41, pp. 1050-1055; Warris, A., Bjorneklett, A., Gaustad, P., Invasive pulmonary aspergillosis associated with infliximab therapy (2001) N. Engl. J. Med., 344, pp. 1099-1100; Williams, K.L., Fuller, C.R., Dieleman, L.A., DaCosta, C.M., Haldeman, K.M., Sartor, R.B., Lund, P.K., Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone (2001) Gastroenterology, 120, pp. 925-937; Wirtz, S., Neurath, M.F., Animal models of intestinal inflammation: new insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease (2000) Int. J. Colorectal Dis., 15, pp. 144-160; Yue, G., Lai, P.S., Yin, K., Sun, F.F., Nagele, R.G., Liu, X., Linask, K.K., Wong, P.Y., Colon epithelial cell death in 2,4,6-trinitrobenzenesulfonic acid-induced colitis is associated with increased inducible nitric-oxide synthase expression and peroxynitrite production (2001) J. Pharmacol. Exp. Ther., 297, pp. 915-925; Zhu, S., Stavrovskaya, I.G., Drozda, M., Kim, B.Y., Ona, V., Li, M., Sarang, S., Friedlander, R.M., Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice (2002) Nature, 417, pp. 74-78; Zingarelli, B., Szabo, C., Salzman, A.L., Reduced oxidative and nitrosative damage in murine experimental colitis in the absence of inducible nitric oxide synthase (1999) Gut, 45, pp. 199-209
PY - 2009
Y1 - 2009
N2 - In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases. © 2009 Elsevier Inc. All rights reserved.
AB - In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases. © 2009 Elsevier Inc. All rights reserved.
KW - Colitis
KW - Dextran sulfate sodium
KW - Inducible nitric oxide synthase
KW - Inflammatory bowel diseases
KW - Matrix metalloproteinases
KW - Minocycline
KW - Trinitrobenzene sulfonic acid
KW - antibiotic agent
KW - collagenase 3
KW - dextran sulfate
KW - gelatinase A
KW - gelatinase B
KW - inducible nitric oxide synthase
KW - matrix metalloproteinase
KW - messenger RNA
KW - minocycline
KW - nitric oxide
KW - stromelysin
KW - trinitrobenzenesulfonic acid
KW - acute disease
KW - animal experiment
KW - animal model
KW - antiinflammatory activity
KW - article
KW - chronic disease
KW - colitis
KW - controlled study
KW - disease severity
KW - drug dose comparison
KW - drug dose increase
KW - enteritis
KW - experimental model
KW - immune response
KW - immunohistochemistry
KW - intestine cell
KW - male
KW - mortality
KW - mouse
KW - nonhuman
KW - real time polymerase chain reaction
KW - reverse transcription polymerase chain reaction
KW - Animals
KW - Anti-Bacterial Agents
KW - Anti-Inflammatory Agents
KW - Cytokines
KW - Dextran Sulfate
KW - Disease Models, Animal
KW - Enzyme Inhibitors
KW - Inflammation
KW - Male
KW - Matrix Metalloproteinases
KW - Metronidazole
KW - Mice
KW - Mice, Inbred BALB C
KW - Mice, Inbred C57BL
KW - Nitric Oxide Synthase Type II
KW - RNA, Messenger
KW - Species Specificity
KW - Survival Analysis
KW - Trinitrobenzenesulfonic Acid
KW - Mus
U2 - 10.1016/j.taap.2009.02.026
DO - 10.1016/j.taap.2009.02.026
M3 - Article
SN - 0041-008X
VL - 237
SP - 69
EP - 82
JO - Toxicology and Applied Pharmacology
JF - Toxicology and Applied Pharmacology
IS - 1
ER -