TY - JOUR
T1 - Meroterpenoids from a Medicinal Fungus Antrodia cinnamomea
AU - Chen, Mei Chuan
AU - Cho, Ting Yu
AU - Kuo, Yueh Hsiung
AU - Lee, Tzong Huei
N1 - Publisher Copyright:
© 2017 The American Chemical Society and American Society of Pharmacognosy.
PY - 2017/9/22
Y1 - 2017/9/22
N2 - Antrodia cinnamomea, a medicinal fungus indigenous to Taiwan, has been shown to exhibit a broad spectrum of bioactivities for the treatments of alcoholic intoxication, diarrhea, abdominal pain, and fatigue, and a number of active principles have been identified. Among the bioactive entities, clinical trials of antroquinonol and 4-acetyl antroquinonol B are being carried out for curing cancer, hypercholesterolemia, and hyperlipidemia. The total synthesis of antroquinonol has been achieved; however, investigating the structure-activity relationship of this class of compounds remained difficult due to the lack of available analogues. Twenty antroquinonols isolated from A. cinnamomea IFS006 are reported herein. Their structures were elucidated using spectral analysis and by comparison with literature values. Of these, 11 antroquinonol analogues, namely, antroquinonols N-X (1-11), were previously unreported. The growth inhibitory activity of all the antroquinonol analogues was evaluated against human A549 and PC-3 cancer cell lines, and antroquinonol A exhibited the most potent activity, with GI50 values of 5.7 ± 0.2 and 13.5 ± 0.2 μM, respectively. Antroquinonols V (9) and W (10) also showed growth inhibitory activity against A549 cells with GI50 values of 8.2 ± 0.8 and 7.1 ± 2.1 μM, respectively, compared to 5-fluorouracil (GI50 = 4.2 ± 0.2 μM).
AB - Antrodia cinnamomea, a medicinal fungus indigenous to Taiwan, has been shown to exhibit a broad spectrum of bioactivities for the treatments of alcoholic intoxication, diarrhea, abdominal pain, and fatigue, and a number of active principles have been identified. Among the bioactive entities, clinical trials of antroquinonol and 4-acetyl antroquinonol B are being carried out for curing cancer, hypercholesterolemia, and hyperlipidemia. The total synthesis of antroquinonol has been achieved; however, investigating the structure-activity relationship of this class of compounds remained difficult due to the lack of available analogues. Twenty antroquinonols isolated from A. cinnamomea IFS006 are reported herein. Their structures were elucidated using spectral analysis and by comparison with literature values. Of these, 11 antroquinonol analogues, namely, antroquinonols N-X (1-11), were previously unreported. The growth inhibitory activity of all the antroquinonol analogues was evaluated against human A549 and PC-3 cancer cell lines, and antroquinonol A exhibited the most potent activity, with GI50 values of 5.7 ± 0.2 and 13.5 ± 0.2 μM, respectively. Antroquinonols V (9) and W (10) also showed growth inhibitory activity against A549 cells with GI50 values of 8.2 ± 0.8 and 7.1 ± 2.1 μM, respectively, compared to 5-fluorouracil (GI50 = 4.2 ± 0.2 μM).
UR - http://www.scopus.com/inward/record.url?scp=85029742887&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029742887&partnerID=8YFLogxK
U2 - 10.1021/acs.jnatprod.7b00223
DO - 10.1021/acs.jnatprod.7b00223
M3 - Article
C2 - 28898082
AN - SCOPUS:85029742887
SN - 0163-3864
VL - 80
SP - 2439
EP - 2446
JO - Journal of Natural Products
JF - Journal of Natural Products
IS - 9
ER -