摘要
In this study, magnesium sulphate dose-dependently (0.6-3.0 mmol/l) inhibited platelet aggregation in human platelets stimulated by agonists. Furthermore, magnesium sulphate (3.0 mmol/l) markedly interfered with the binding of fluorescein isothiocanate-triflavin to the glycoprotein (GP)IIb/IIIa complex in platelets stimulated by collagen. Magnesium sulphate (1.5 and 3.0 mmol/l) also inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by collagen. Magnesium sulphate (3.0 mmol/l) significantly inhibited thromboxane A2 formation stimulated by collagen in platelets. Moreover, magnesium sulphate (1.5 and 3.0 mmol/l) obviously increased the fluorescence of platelet membranes tagged with diphenylhexatriene. In addition, magnesium sulphate (1.5 and 3.0 mmol/l) increased the formation of cyclic adenosine monophosphate (AMP) in platelets. Phosphorylation of a protein of Mr 47 000 (P47) was markedly inhibited by magnesium sulphate (1.5 mmol/l). In conclusion, the antiplatelet activity of magnesium sulphate may involve the following two pathways. (1) Magnesium sulphate may initially induce membrane fluidity changes with resulting interference of fibrinogen binding to the GPIIb/IIIa complex, followed by inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of both intracellular Ca2+ mobilization and phosphorylation of P47. (2) Magnesium sulphate might also trigger the formation of cyclic AM, ultimately resulting in inhibition of the phosphorylation of P47 and intracellular Ca+2 mobilization.
原文 | 英語 |
---|---|
頁(從 - 到) | 1033-1041 |
頁數 | 9 |
期刊 | British Journal of Haematology |
卷 | 119 |
發行號 | 4 |
DOIs | |
出版狀態 | 已發佈 - 2002 |
ASJC Scopus subject areas
- 血液學