TY - JOUR
T1 - Magnesium sulfate mitigates lung injury induced by bilateral lower limb ischemia-reperfusion in rats
AU - Kao, Ming Chang
AU - Jan, Woan Ching
AU - Tsai, Pei Shan
AU - Wang, Tao Yeuan
AU - Huang, Chun Jen
PY - 2011/11
Y1 - 2011/11
N2 - Background: Lower limb ischemia-reperfusion (I/R) elicits oxidative stress and causes inflammation in lung tissues that may lead to lung injury. Magnesium sulfate (MgSO 4) possesses potent anti-oxidation and anti-inflammation capacity. We sought to elucidate whether MgSO 4 could mitigate I/R-induced lung injury. As MgSO 4 is an L-type calcium channel inhibitor, the role of the L-type calcium channels was elucidated. Materials and Methods: Adult male rats were allocated to receive I/R, I/R plus MgSO 4 (10, 50, or 100 mg/kg), or I/R plus MgSO 4 (100 mg/kg) plus the L-type calcium channels activator BAY-K8644 (20 μg/kg) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquets high around each thigh for 3 h followed by reperfusion for 3 h. After euthanization, degrees of lung injury, oxidative stress, and inflammation were determined. Results: Arterial blood gas and histologic assays, including histopathology, leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity), and lung water content, confirmed that I/R caused significant lung injury. Significant increases in inflammatory molecules (chemokine, cytokine, and prostaglandin E 2 concentrations) and lipid peroxidation (malondialdehyde concentration) confirmed that I/R caused significant inflammation and oxidative stress in rat lungs. MgSO 4, at the dosages of 50 and 100 mg/kg but not 10 mg/kg, attenuated the oxidative stress, inflammation, and lung injury induced by I/R. Moreover, BAY-K8644 reversed the protective effects of MgSO 4. Conclusions: MgSO 4 mitigates lung injury induced by bilateral lower limb I/R in rats. The mechanisms may involve inhibiting the L-type calcium channels.
AB - Background: Lower limb ischemia-reperfusion (I/R) elicits oxidative stress and causes inflammation in lung tissues that may lead to lung injury. Magnesium sulfate (MgSO 4) possesses potent anti-oxidation and anti-inflammation capacity. We sought to elucidate whether MgSO 4 could mitigate I/R-induced lung injury. As MgSO 4 is an L-type calcium channel inhibitor, the role of the L-type calcium channels was elucidated. Materials and Methods: Adult male rats were allocated to receive I/R, I/R plus MgSO 4 (10, 50, or 100 mg/kg), or I/R plus MgSO 4 (100 mg/kg) plus the L-type calcium channels activator BAY-K8644 (20 μg/kg) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquets high around each thigh for 3 h followed by reperfusion for 3 h. After euthanization, degrees of lung injury, oxidative stress, and inflammation were determined. Results: Arterial blood gas and histologic assays, including histopathology, leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity), and lung water content, confirmed that I/R caused significant lung injury. Significant increases in inflammatory molecules (chemokine, cytokine, and prostaglandin E 2 concentrations) and lipid peroxidation (malondialdehyde concentration) confirmed that I/R caused significant inflammation and oxidative stress in rat lungs. MgSO 4, at the dosages of 50 and 100 mg/kg but not 10 mg/kg, attenuated the oxidative stress, inflammation, and lung injury induced by I/R. Moreover, BAY-K8644 reversed the protective effects of MgSO 4. Conclusions: MgSO 4 mitigates lung injury induced by bilateral lower limb I/R in rats. The mechanisms may involve inhibiting the L-type calcium channels.
KW - IL-6
KW - L-type calcium channels
KW - MDA
KW - MIP-2
KW - NO
UR - http://www.scopus.com/inward/record.url?scp=80054710987&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054710987&partnerID=8YFLogxK
U2 - 10.1016/j.jss.2011.03.028
DO - 10.1016/j.jss.2011.03.028
M3 - Article
C2 - 21514604
AN - SCOPUS:80054710987
SN - 0022-4804
VL - 171
JO - Journal of Surgical Research
JF - Journal of Surgical Research
IS - 1
ER -