Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry

Wen Chan Hsu, Shun Pang Chang, Lie Chwen Lin, Chia Lin Li, Christopher D. Richardson, Chun Ching Lin, Liang Tzung Lin

研究成果: 雜誌貢獻文章同行評審

54 引文 斯高帕斯(Scopus)

摘要

A preventive vaccine against hepatitis C virus (HCV) infection remains unavailable and newly developed drugs against viral replication are complicated by potential drug-resistance and high cost. These issues justify the need to develop alternative antiviral agents and expand the scope of strategies for the treatment of hepatitis C, such as targeting viral entry. In this study, we explore the bioactivity of Limonium sinense (L. sinense) and its purified constituents against HCV life cycle using subgenomic replicon and infectious HCV culture systems. Data indicated that the water extract from the underground part of L. sinense (LS-UW) exhibited potent inhibitory activity against HCV at non-cytotoxic concentrations. LS-UW targeted early HCV infection without affecting viral replication, translation, and cell-to-cell transmission, and blocked viral attachment and post-attachment entry/fusion steps. Bioactivity analysis of major constituents from LS-UW through viral infectivity/entry assays revealed that gallic acid (GA) also inhibits HCV entry. Furthermore, both LS-UW and GA could suppress HCV infection of primary human hepatocytes. Due to their potency and ability to target HCV early viral entry, LS-UW and GA may be of value for further development as prospective antivirals against HCV.

原文英語
頁(從 - 到)139-147
頁數9
期刊Antiviral Research
118
DOIs
出版狀態已發佈 - 6月 1 2015

ASJC Scopus subject areas

  • 藥理
  • 病毒學

指紋

深入研究「Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry」主題。共同形成了獨特的指紋。

引用此