TY - JOUR
T1 - Isolated compounds from turpinia formosana nakai induce ossification
AU - Imtiyaz, Zuha
AU - Wang, Yi Fang
AU - Lin, Yi Tzu
AU - Liu, Hui Kang
AU - Lee, Mei Hsien
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Bone metabolism is a homeostatic process, imbalance in which leads to the onset of diseases such as osteoporosis and osteopenia. Although several drugs are currently available to treat such conditions, they are associated with severe side effects and do not enhance bone formation. Thus, identifying alternative treatment strategies that focus on enhancing bone formation is essential. Herein, we explored the osteogenic potential of Turpinia formosana Nakai using human osteoblast (HOb) cells. The plant extract was subjected to various chromatographic techniques to obtain six compounds, including one new compound: 3,3′-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1). Compounds 3,3′-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1), gentisic acid 5-O-β-d-(6′-O-galloyl) glucopyranoside (2), strictinin (3), and (-)-epicatechin-3-O-β-d-allopyranoside (6) displayed no significant cytotoxicity toward HOb cells, and thus their effects on various osteogenic markers were analyzed. Results showed that 1–3 and 6 significantly increased alkaline phosphatase (ALP) activity up to 120.0, 121.3, 116.4, and 125.1%, respectively. Furthermore, 1, 2, and 6 also markedly enhanced the mineralization process with respective values of up to 136.4, 118.9, and 134.6%. In addition, the new compound, 1, significantly increased expression levels of estrogen receptor-α (133.4%) and osteogenesis-related genes of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), bone morphogenetic protein (BMP)-2, bone sialoprotein (BSP), type I collagen (Col-1), and brain-derived neurotropic factor (BDNF) by at least 1.5-fold. Our results demonstrated that compounds isolated from T. formosana possess robust osteogenic potential, with the new compound, 1, also exhibiting the potential to enhance the bone formation process. We suggest that T. formosana and its isolated active compounds deserve further evaluation for development as anti-osteoporotic agents.
AB - Bone metabolism is a homeostatic process, imbalance in which leads to the onset of diseases such as osteoporosis and osteopenia. Although several drugs are currently available to treat such conditions, they are associated with severe side effects and do not enhance bone formation. Thus, identifying alternative treatment strategies that focus on enhancing bone formation is essential. Herein, we explored the osteogenic potential of Turpinia formosana Nakai using human osteoblast (HOb) cells. The plant extract was subjected to various chromatographic techniques to obtain six compounds, including one new compound: 3,3′-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1). Compounds 3,3′-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1), gentisic acid 5-O-β-d-(6′-O-galloyl) glucopyranoside (2), strictinin (3), and (-)-epicatechin-3-O-β-d-allopyranoside (6) displayed no significant cytotoxicity toward HOb cells, and thus their effects on various osteogenic markers were analyzed. Results showed that 1–3 and 6 significantly increased alkaline phosphatase (ALP) activity up to 120.0, 121.3, 116.4, and 125.1%, respectively. Furthermore, 1, 2, and 6 also markedly enhanced the mineralization process with respective values of up to 136.4, 118.9, and 134.6%. In addition, the new compound, 1, significantly increased expression levels of estrogen receptor-α (133.4%) and osteogenesis-related genes of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), bone morphogenetic protein (BMP)-2, bone sialoprotein (BSP), type I collagen (Col-1), and brain-derived neurotropic factor (BDNF) by at least 1.5-fold. Our results demonstrated that compounds isolated from T. formosana possess robust osteogenic potential, with the new compound, 1, also exhibiting the potential to enhance the bone formation process. We suggest that T. formosana and its isolated active compounds deserve further evaluation for development as anti-osteoporotic agents.
KW - 3,3-di-O-methylellagic acid-4-O-α-l-arabinofuranoside
KW - Alkaline phosphatase
KW - Bone formation
KW - Estrogen receptors
KW - Mineralization
KW - Osteoporosis
KW - Turpinia formosana
UR - http://www.scopus.com/inward/record.url?scp=85068655102&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068655102&partnerID=8YFLogxK
U2 - 10.3390/ijms20133119
DO - 10.3390/ijms20133119
M3 - Article
C2 - 31247918
AN - SCOPUS:85068655102
SN - 1661-6596
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 13
M1 - 3119
ER -