TY - JOUR
T1 - Involvement of Nucleic Acid Synthesis in Cell Killing Mechanisms of Topoisomerase Poisons
AU - D'Arpa, Peter
AU - Beardmore, Christopher
AU - Liu, Leroy F.
PY - 1990/11/1
Y1 - 1990/11/1
N2 - The primary cytotoxic mechanism of camptothecin has been proposed to involve an interaction between the replication machinery and the camptothecin-mediated topoisomerase I-DNA cleavable complex (Y. H. Hsiang, M. G. Lihou, and L. F. Liu, Cancer Res., 49:5077–5082,1989). In the present study, we show that killing of V79 cells by the topoisomerase II poisons 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide may involve ongoing RNA synthesis in addition to ongoing DNA synthesis. V79 cells synchronized by mitotic shake-off were treated with topoisomerase poisons in the presence of inhibitors of nucleic acid synthesis. S-Phase V79 cells were more sensitive to the topoisomerase I poison camptothecin and the topoisomerase II poison m-AMSA than d-phase cells. The greater sensitivity of S-phase cells to killing by m-AMSA and camptothecin was abolished during cotreatment, but not posttreatment, with aphidicolin, suggesting that ongoing DNA synthesis is involved in cell killing by both topoisomerase I and II poisons. Cotreatment with transcription inhibitors, such as 5,6-dichloro-1-β-D-ribofuranosyl benzimidazole or cordycepin, partially protected cells from the cytotoxic effects of m-AMSA but had no effect on camptothecin-mediated cytotoxicity. These results suggest that ongoing RNA transcription may be involved in cell killing by topoisomerase II poisons but not topoisomerase I poisons. Cotreatment with camptothecin reduced m-AMSA-mediated cytotoxicity in d-phase V79 cells, suggesting a possible antagonism between topoisomerase I and II poisons. This antagonistic effect between topoisomerase I and II poisons could be explained by the strong inhibitory effect of camptothecin on RNA transcription.
AB - The primary cytotoxic mechanism of camptothecin has been proposed to involve an interaction between the replication machinery and the camptothecin-mediated topoisomerase I-DNA cleavable complex (Y. H. Hsiang, M. G. Lihou, and L. F. Liu, Cancer Res., 49:5077–5082,1989). In the present study, we show that killing of V79 cells by the topoisomerase II poisons 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide may involve ongoing RNA synthesis in addition to ongoing DNA synthesis. V79 cells synchronized by mitotic shake-off were treated with topoisomerase poisons in the presence of inhibitors of nucleic acid synthesis. S-Phase V79 cells were more sensitive to the topoisomerase I poison camptothecin and the topoisomerase II poison m-AMSA than d-phase cells. The greater sensitivity of S-phase cells to killing by m-AMSA and camptothecin was abolished during cotreatment, but not posttreatment, with aphidicolin, suggesting that ongoing DNA synthesis is involved in cell killing by both topoisomerase I and II poisons. Cotreatment with transcription inhibitors, such as 5,6-dichloro-1-β-D-ribofuranosyl benzimidazole or cordycepin, partially protected cells from the cytotoxic effects of m-AMSA but had no effect on camptothecin-mediated cytotoxicity. These results suggest that ongoing RNA transcription may be involved in cell killing by topoisomerase II poisons but not topoisomerase I poisons. Cotreatment with camptothecin reduced m-AMSA-mediated cytotoxicity in d-phase V79 cells, suggesting a possible antagonism between topoisomerase I and II poisons. This antagonistic effect between topoisomerase I and II poisons could be explained by the strong inhibitory effect of camptothecin on RNA transcription.
UR - http://www.scopus.com/inward/record.url?scp=0025133118&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025133118&partnerID=8YFLogxK
M3 - Article
C2 - 1698546
AN - SCOPUS:0025133118
SN - 0008-5472
VL - 50
SP - 6919
EP - 6924
JO - Cancer Research
JF - Cancer Research
IS - 21
ER -