Integrated multi-omics investigations reveal the key role of synergistic microbial networks in removing plasticizer di-(2-ethylhexyl) phthalate from estuarine sediments

Sean Ting-Shyang Wei, Yi Lung Chen, Yu Wei Wu, Tien Yu Wu, Yi Li Lai, Po Hsiang Wang, Wael Ismail, Tzong Huei Lee, Yin Ru Chiang

研究成果: 雜誌貢獻文章同行評審

25 引文 斯高帕斯(Scopus)

摘要

Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer worldwide, with an annual global production of more than 8 million tons. Because of its improper disposal, endocrine-disrupting DEHP often accumulates in estuarine sediments in industrialized countries at submillimolar levels, resulting in adverse effects on both ecosystems and human beings. The microbial degraders and biodegradation pathways of DEHP in O2-limited estuarine sediments remain elusive. Here, we employed an integrated meta-omics approach to identify the DEHP degradation pathway and major degraders in this ecosystem. Estuarine sediments were treated with DEHP or its derived metabolites, o-phthalic acid and benzoic acid. The rate of DEHP degradation in denitrifying mesocosms was two times slower than that of o-phthalic acid, suggesting that side chain hydrolysis of DEHP is the rate-limiting step of anaerobic DEHP degradation. On the basis of microbial community structures, functional gene expression, and metabolite profile analysis, we proposed that DEHP biodegradation in estuarine sediments is mainly achieved through synergistic networks between denitrifying proteobacteria. Acidovorax and Sedimenticola are the major degraders of DEHP side chains; the resulting o-phthalic acid is mainly degraded by Aestuariibacter through the UbiD-dependent benzoyl coenzyme A (benzoyl-CoA) pathway. We isolated and characterized Acidovorax sp. strain 210- 6 and its extracellular hydrolase, which hydrolyzes both alkyl side chains of DEHP. Interestingly, genes encoding DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase and phthaloyl-CoA decarboxylase-key enzymes for side chain hydrolysis and o-phthalic acid degradation, respectively-are flanked by transposases in these proteobacterial genomes, indicating that DEHP degradation capacity is likely transferred horizontally in microbial communities.

原文英語
文章編號e00358-21
期刊mSystems
6
發行號3
DOIs
出版狀態已發佈 - 6月 2021

ASJC Scopus subject areas

  • 微生物學
  • 生態學、進化論、行為學與系統學
  • 生物化學
  • 生理學
  • 建模與模擬
  • 分子生物學
  • 遺傳學
  • 電腦科學應用

指紋

深入研究「Integrated multi-omics investigations reveal the key role of synergistic microbial networks in removing plasticizer di-(2-ethylhexyl) phthalate from estuarine sediments」主題。共同形成了獨特的指紋。

引用此