TY - JOUR
T1 - Inhibitory activities of acteoside, isoacteoside, and its structural constituents against protein glycation in vitro
AU - Liu, Yuh Hwa
AU - Lu, Yeh Lin
AU - Han, Chuan Hsiao
AU - Hou, Wen Chi
N1 - Funding Information:
The authors want to thank the financial support (SKH-TMU-102-07) from Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
PY - 2013/8/19
Y1 - 2013/8/19
N2 - Background: Advanced glycation end products (AGE) are substances that can induce insulin resistance in adipocyte, hepatocyte and muscle cells. This resistance correlates highly with cardiovascular disease and diabetic complications. Acteoside (A), a phenylethanoid glycoside, is an active compound in several plants and traditional herbal medicines. Acteoside, its structural isomer, isoacteoside (I), and their constituents, caffeic acid (C) and 3,4-dihydroxyphenylethanol (D), were used in the study to investigate the inhibitory activity against AGE formations in vitro. Results: AGE formations were detected by anti-(Nε-(carboxymethyl)lysine (anti-CML), using bovine serum albumin (BSA)/glucose (glc) and BSA/galactose (gal) as models, or by anti-argpyrimidine (anti-AP), using BSA/methylglyoxal (MGO) as models. It was found that A, I, C, or D, each at 5 mM, could attenuate the CML formations detected by ELISA in the BSA/gal model of a 3-day or 5-day reaction, and showed significant differences (P < 0.01 or P < 0.001) compared to the control. However, these compounds showed a minor effect after a 7-day incubation. It was also found that C or D could lower the CML formations in the BSA/glc model and showed significant differences (P < 0.05 or P < 0.01) compared to the control after a 3-day, 5-day and 7-day reaction. It was found that A, I, C, or D, each at 0.5 mM or 5 mM, could attenuate the AP formations in the BSA/MGO model of a 3-day reaction and showed significant differences (P < 0.001) compared to the control. Conclusions: The results suggest the potential anti-glycation activities of A and I in vitro may apply to cell models at higher glucose concentrations or to diabetic animal models, and need further investigation.
AB - Background: Advanced glycation end products (AGE) are substances that can induce insulin resistance in adipocyte, hepatocyte and muscle cells. This resistance correlates highly with cardiovascular disease and diabetic complications. Acteoside (A), a phenylethanoid glycoside, is an active compound in several plants and traditional herbal medicines. Acteoside, its structural isomer, isoacteoside (I), and their constituents, caffeic acid (C) and 3,4-dihydroxyphenylethanol (D), were used in the study to investigate the inhibitory activity against AGE formations in vitro. Results: AGE formations were detected by anti-(Nε-(carboxymethyl)lysine (anti-CML), using bovine serum albumin (BSA)/glucose (glc) and BSA/galactose (gal) as models, or by anti-argpyrimidine (anti-AP), using BSA/methylglyoxal (MGO) as models. It was found that A, I, C, or D, each at 5 mM, could attenuate the CML formations detected by ELISA in the BSA/gal model of a 3-day or 5-day reaction, and showed significant differences (P < 0.01 or P < 0.001) compared to the control. However, these compounds showed a minor effect after a 7-day incubation. It was also found that C or D could lower the CML formations in the BSA/glc model and showed significant differences (P < 0.05 or P < 0.01) compared to the control after a 3-day, 5-day and 7-day reaction. It was found that A, I, C, or D, each at 0.5 mM or 5 mM, could attenuate the AP formations in the BSA/MGO model of a 3-day reaction and showed significant differences (P < 0.001) compared to the control. Conclusions: The results suggest the potential anti-glycation activities of A and I in vitro may apply to cell models at higher glucose concentrations or to diabetic animal models, and need further investigation.
KW - 3'4'-dihydroxyphenylethanol
KW - Acteoside
KW - Advanced glycation endproducts
KW - Argpyrimidine
KW - Cafeic acid
KW - Isoacteoside
KW - Methylglyoxal
KW - N-(carboxymethyl)lysine
UR - http://www.scopus.com/inward/record.url?scp=84886420837&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886420837&partnerID=8YFLogxK
U2 - 10.1186/1999-3110-54-6
DO - 10.1186/1999-3110-54-6
M3 - Article
AN - SCOPUS:84886420837
SN - 1817-406X
VL - 54
JO - Botanical Studies
JF - Botanical Studies
IS - 1
ER -