摘要
Background: Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER) positive breast cancer in pre- and post-menopausal women. However, using tamoxifen routinely to inhibit endogenous or exogenous estrogen effects is occasionally difficult because of its potential side effects. Objectives: The aim of this study is to design a local drug delivery system to encapsulate tamoxifen for observing their efficacy of skin penetration, drug accumulation and cancer therapy. Methods: A cationic liposome-PEG-PEI complex (LPPC) was used as a carrier for the encapsulation of tamoxifen and forming 'LPPC/TAM' for transdermal release. The cytotoxicity of LPPC/TAM was analyzed by MTT. The skin penetration, tumor growth inhibition and organ damages were measured in xenograft mice following transdermal treatment. Results: LPPC/TAM had an average size less than 270nm and a zeta-potential of approximately 40mV. LPPC/TAM displayed dramatically increased the cytotoxic activity in all breast cancer cells, especially in ER-positive breast cancer cells. In vivo, LPPC drug delivery helped the fluorescent dye penetrating across the skim and accumulating rapidly in tumor area. Administration of LPPC/TAM by transdermal route inhibited about 86% of tumor growth in mice bearing BT474 tumors. This local treatment of LPPC/TAM did not injury skin and any organs. Conclusion: LPPC-delivery system provided a better skin penetration and drug accumulation and therapeutic efficacy. Therefore, LPPC/TAM drug delivery maybe a useful transdermal tool of drugs utilization for breast cancer therapy.
原文 | 英語 |
---|---|
文章編號 | 11 |
期刊 | Journal of Nanobiotechnology |
卷 | 14 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 2月 19 2016 |
ASJC Scopus subject areas
- 生物工程
- 醫藥(雜項)
- 分子醫學
- 生物醫學工程
- 應用微生物與生物技術
- 藥學科學