TY - JOUR
T1 - Induction of apoptosis and inhibition of cell growth by tbx5 knockdown contribute to dysmorphogenesis in Zebrafish embryos
AU - Lu, Jenher
AU - Tsai, Tzuchun
AU - Choo, Sielin
AU - Yeh, Shuyu
AU - Tang, Renbing
AU - Yang, Anhang
AU - Lee, Hsinyu
AU - Lu, Jennkan
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2011
Y1 - 2011
N2 - Background: The tbx5 mutation in human causes Holt-Oram syndrome, an autosomal dominant condition characterized by a familial history of congenital heart defects and preaxial radial upper-limb defects. We report aberrant apoptosis and dormant cell growth over head, heart, trunk, fin, and tail of zebrafish embryos with tbx5 deficiency correspond to the dysmorphogenesis of tbx5 morphants. Methods. Wild-type zebrafish embryos at the 1-cell stage were injected with 4.3 nl of 19.4 ng of tbx5 morpholino or mismatch-tbx5-MO respectively in tbx5 morphants and mismatched control group. Semi-quantitative RT-PCR was used to for expression analysis of apoptosis and cell cycle-related genes. TUNEL and immunohistochemical assay showed the apoptosis spots within the local tissues. Ultra-structure of cardiac myocardium was examined by transmission electron microscope. Results: Apoptosis-related genes (bad, bax, and bcl2), and cell cycle-related genes (cdk2, pcna, p27, and p57) showed remarkable increases in transcriptional level by RT-PCR. Using a TUNEL and immnuohistochemical assay, apoptosis was observed in the organs including the head, heart, pectoral fins, trunk, and tail of tbx5 knockdown embryos. Under transmission electron microscopic examination, mitochondria in cardiomyocytes became swollen and the myocardium was largely disorganized with a disarrayed appearance, compatible with reduced enhancement of myosin in the cardiac wall. The ATP level was reduced, and the ADP/ATP ratio as an apoptotic index significantly increased in the tbx5 deficient embryos. Conclusion: Our study highlighted that tbx5 deficiency evoked apoptosis, distributed on multiple organs corresponding to dysmorphogenesis with the shortage of promising maturation, in tbx5 knockdown zebrafish embryos. We hypothesized that mesenchymal cell apoptosis associated with altered TBX5 level may subsequently interfered with organogenesis and contributed to dysmorphogenesis in tbx5 deficiency zebrafish embryos.
AB - Background: The tbx5 mutation in human causes Holt-Oram syndrome, an autosomal dominant condition characterized by a familial history of congenital heart defects and preaxial radial upper-limb defects. We report aberrant apoptosis and dormant cell growth over head, heart, trunk, fin, and tail of zebrafish embryos with tbx5 deficiency correspond to the dysmorphogenesis of tbx5 morphants. Methods. Wild-type zebrafish embryos at the 1-cell stage were injected with 4.3 nl of 19.4 ng of tbx5 morpholino or mismatch-tbx5-MO respectively in tbx5 morphants and mismatched control group. Semi-quantitative RT-PCR was used to for expression analysis of apoptosis and cell cycle-related genes. TUNEL and immunohistochemical assay showed the apoptosis spots within the local tissues. Ultra-structure of cardiac myocardium was examined by transmission electron microscope. Results: Apoptosis-related genes (bad, bax, and bcl2), and cell cycle-related genes (cdk2, pcna, p27, and p57) showed remarkable increases in transcriptional level by RT-PCR. Using a TUNEL and immnuohistochemical assay, apoptosis was observed in the organs including the head, heart, pectoral fins, trunk, and tail of tbx5 knockdown embryos. Under transmission electron microscopic examination, mitochondria in cardiomyocytes became swollen and the myocardium was largely disorganized with a disarrayed appearance, compatible with reduced enhancement of myosin in the cardiac wall. The ATP level was reduced, and the ADP/ATP ratio as an apoptotic index significantly increased in the tbx5 deficient embryos. Conclusion: Our study highlighted that tbx5 deficiency evoked apoptosis, distributed on multiple organs corresponding to dysmorphogenesis with the shortage of promising maturation, in tbx5 knockdown zebrafish embryos. We hypothesized that mesenchymal cell apoptosis associated with altered TBX5 level may subsequently interfered with organogenesis and contributed to dysmorphogenesis in tbx5 deficiency zebrafish embryos.
KW - apoptosis
KW - cell cycle
KW - Holt-Oram syndrome
KW - mitochondria
KW - tbx5
KW - zebrafish
UR - http://www.scopus.com/inward/record.url?scp=80053587662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053587662&partnerID=8YFLogxK
U2 - 10.1186/1423-0127-18-73
DO - 10.1186/1423-0127-18-73
M3 - Article
C2 - 21982178
AN - SCOPUS:80053587662
SN - 1021-7770
VL - 18
JO - Journal of Biomedical Science
JF - Journal of Biomedical Science
IS - 1
M1 - 73
ER -