In-silico evaluation of genetic alterations in ovarian carcinoma and therapeutic efficacy of nsc777201, as a novel multi-target agent for ttk, nek2, and cdk1

Harshita Nivrutti Khedkar, Yu Chi Wang, Vijesh Kumar Yadav, Prateeti Srivastava, Bashir Lawal, Ntlotlang Mokgautsi, Maryam Rachmawati Sumitra, Alexander T.H. Wu, Hsu Shan Huang

研究成果: 雜誌貢獻文章同行評審

9 引文 斯高帕斯(Scopus)

摘要

Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease’s pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.
原文英語
文章編號5895
期刊International journal of molecular sciences
22
發行號11
DOIs
出版狀態已發佈 - 6月 2021

ASJC Scopus subject areas

  • 催化
  • 分子生物學
  • 光譜
  • 電腦科學應用
  • 物理與理論化學
  • 有機化學
  • 無機化學

指紋

深入研究「In-silico evaluation of genetic alterations in ovarian carcinoma and therapeutic efficacy of nsc777201, as a novel multi-target agent for ttk, nek2, and cdk1」主題。共同形成了獨特的指紋。

引用此