Identifying Semantic in High-Dimensional Web Data Using Latent Semantic Manifold

Ajit Kumar, Sanjeev Maskara, I-Jen Chiang

研究成果: 雜誌貢獻文章同行評審

摘要

Latent Semantic Analysis involves natural language processing techniques for analyzing relation- ships between a set of documents and the terms they contain, by producing a set of concepts (related to the documents and terms) called semantic topics. These semantic topics assist search engine users by providing leads to the more relevant document. We develope a novel algorithm called Latent Semantic Manifold (LSM) that can identify the semantic topics in the high-dimen- sional web data. The LSM algorithm is established upon the concepts of topology and probability. Asearch tool is also developed using the LSM algorithm. This search tool is deployed for two years at two sites in Taiwan: 1) Taipei Medical University Library, Taipei, and 2) Biomedical Engineering Laboratory, Institute of Biomedical Engineering, National Taiwan University, Taipei. We evaluate the effectiveness and efficiency of the LSM algorithm by comparing with other contemporary algorithms. The results show that the LSM algorithm outperforms compared with others. This algorithm can be used to enhance the functionality of currently available search engines.
原文英語
頁(從 - 到)136-152
期刊Journal of Data Analysis and Information Processing
3
發行號4
DOIs
出版狀態已發佈 - 2015

指紋

深入研究「Identifying Semantic in High-Dimensional Web Data Using Latent Semantic Manifold」主題。共同形成了獨特的指紋。

引用此